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Abstract In this study, we propose a hedonic housing model to address spa-
tial and temporal latent structures simultaneously.

With the development of spatial econometrics and spatial statistics, economists
can now better assess the impact of spatial correlation on house prices. How-
ever, the simultaneous handling of spatial and temporal correlation is still
under development.

Since spatial econometric models are limited to account for two kinds of cor-
relation simultaneously, we propose using a hierarchical spatiotemporal model
from spatial statistics. Based on a Bayesian framework and a stochastic par-
tial differential equation (SPDE) approach, the estimation is carried out via
INLA.

We then perform an empirical study on apartment transaction prices in
Corsica (France) using the proposed model. The empirical results demonstrate
that the prediction performance of the hierarchical spatiotemporal model is
the best among all candidate models. Moreover, the hedonic housing estimates
are affected by spatial effects and temporal effects. Ignoring these effects could
result in serious forecasting issues.

Keywords Hierarchical spatiotemporal model · Hedonic price model ·
INLA-SPDE · Apartment market

JEL classifications: C11, C14, C33, R31

1 Introduction

It is widely agreed that housing locations affect housing prices. To explain this
phenomenon, Can [14] identifies two effects: 1) “neighborhood effects”, and
2) “adjacent effects”. The first refers to sharing a series of location-specific
amenities and public goods, whereas the second refers to a sort of spillover.

In addition to theoretical explanations, several economists have attempted
to construct appropriate econometric models for evaluating properties. In par-
ticular, using hedonic price methods (HPMs), researchers can evaluate “neigh-
bourhood effects” and interpret them as the marginal willingness to pay for
corresponding attributes, even if these attributes are not measured directly.
Nowadays, with the help of spatial econometrics [1], economists can also esti-
mate “adjacent effects”.

However, another argument emerges in the sense that researchers may omit
the impact from temporal dimension if data are collected over time [19]. Specif-
ically, the researchers have no information on repeated sales in most cases. As
such, housing transaction data pertain to repeated cross-sections, which means
that the data are composed of the different observations from given populations
following chronological order.1 To process such data, the most straightforward

1 According to Dubé and Legros [19, p. 5], “The structure of real estate databases is
different from conventional panels, or pseudo-panels, since the same observation is not nec-
essarily repeated. Instead, real estate data are collection of many cross-sectional data pooled
over time.”
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approach is to build a large pooled cross-section and apply pooled OLS regres-
sion with various space or time fixed dummy variables. However, this approach
has an explicit limitation. It fails to capture the correlation in space and over
time. As such, the estimated coefficients may be biased and predictions may
be unrealistic.

Consequently, the aim of this article is threefold. A Bayesian hierarchi-
cal spatiotemporal model is initially introduced. Spatiotemporal correlation is
gauged via the latent random effect component in the model. We illustrate
how this model is fitted with two new techniques, namely integrated nested
Laplace approximations (INLA) [39] and a stochastic partial differential equa-
tion (SPDE) approach [28]. INLA relies on direct numerical integration and is
designed for latent Gaussian models. In addition, the SPDE approach makes
use of Matérn covariance structures and Delaunay triangles to yield a Gaussian
Markov random field (GMRF), which is a good approximation for the Gaus-
sian random field (GRF). Lastly, a set of Bayesian hierarchical models are
used for studying the Corsican apartment market. We compare the prediction
accuracy of all candidate models, which involve spatial and temporal random
components individually and jointly. A robust model is selected and is devoted
to identifying the role of housing characteristics, geographical hotspots and to
produce accurate market value predictions.

The study is structured as follows. In Section 2, we briefly review literature,
in particular, certain new methods to gauge spatial and temporal correlation
in property prices. In Section 3, we describe the hierarchical spatiotemporal
model and briefly introduce the INLA method and the SPDE approach. In
Section 4, we detail the data, empirical strategies and estimation results in
our study. We conclude in Section 5.

2 Literature review: research trends in the HPM-based property
valuation

Half a century ago, Lancaster [25] introduced his utility theory. He states
that goods per se do not give utilities, but the involved characteristics pro-
vide utilities. As such, the utilities of a good equal the sum of the utilities
of all characteristics. Rosen [38] integrates Lancaster theory into the market
equilibrium framework and develops the hedonic price method.

In the context of house valuation, the hedonic price method ensures that
a house buyer’s utility is the function of the housing characteristics involved
in the purchased house. Moreover, since the house buyer’s utility can be ex-
pressed by the market equilibrium price of the purchased house [18], the house
price is the function of the characteristics associated with the house. Following
Malpezzi’s definition [29], the empirical representation of a house price is given
as:

P = f (S,N,L,C, T, β)
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where P is the house price. S is the structural characteristics of the house,
N represents the neighbourhood characteristics, L signifies the locational char-
acteristics, C describes the contract conditions and T is time. β is the vector
of the parameters to be estimated.

Although the hedonic price method provides the theoretical basis for inves-
tigating the impacts of housing characteristics on prices, the crucial challenge
is the estimation. More specifically, this method provides a general analyt-
ical framework rather than guidance on a specified case [32]. Consequently,
researchers must face the issues ranging from variable selection to model spec-
ifications.

To address these issues, we have observed some emerging trends [41] in
the empirical studies on the hedonic price method, e.g., applications of semi-
parametric or non-parametric methods and applications of spatial economet-
rics [2].

The pioneering application of semi-parametric models on property valua-
tion comes from Pace [33]. To address model specification problems, he sug-
gests the so-called semi-parametric index regression. He also demonstrates how
this model avoids misspecification and controls spatial trends.

Clapp [15] develops the local polynomial regression belonging to semi-
parametric models. The model contains a nonlinear term based on latitudes
and longitudes to calculate housing location values.

In the same year, Kammann and Wand [24] introduced the geoadditive
models family, which is a mixture of additive modeling [12] and a geostatistical
component. There are several candidate specifications for the geostatistical
component, such as a kriging component or a smooth spatial trend component
based on a tensor product of longitude and latitude.

Basile and his colleagues [9] apply a geoadditive model incorporating a
2-dimensional tensor product smoother for space to investigate European in-
dustrial locations. They clearly show that their model outperforms other para-
metric models in the sense that it allows to control unobserved spatial patterns,
to reduce misspecification and to point out inward foreign direct investment
clusters simultaneously. Further, it is possible to model space-time interactions
via a 3-dimensional tensor product smoother [4] and therefore, the model in-
corporating such tensor product smoother can handle repeated cross-sections.

In short, the semi-parametric and geoadditive models have advantages such
as flexibility, handling repeated cross-sections, avoiding model misspecification
and hence, mitigating estimation biases.

Another trend relates to the widely used spatial econometrics [1]. Within
the hedonic price framework, spatial econometric models is used for measuring
location-specific amenities and “spillover” effects. However, applying spatial
econometric models on repeated cross-sections is not rich in literature, most
empirical studies focus on cross-sectional or panel data [1, 42].

After exploring the literature, we find two outstanding applications. Dubé
and Legros [19] figure that the tools for analyzing geo-referenced house trans-
action data are very limited. Pooling data over time and applying time fixed
dummy variables may lead to the biased estimates [34] because the dummy
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variables merely capture temporal variability, but neglect temporal correla-
tion. Hence, they initially propose the so-called spatiotemporal autoregressive
(STAR) model. Certainly, the STAR model is the extension of the correspond-
ing spatial autoregressive (SAR) model. Authors replace the spatial weights
matrix in a SAR model with a spatiotemporal weights matrix, so that spatial
and temporal correlation is gauged. They show that the STAR model performs
better than the SAR model in their case. However, due to its specification, the
STAR model may have limited use.

Another approach called the unbalanced spatial lag pseudo-panel model
with nested random effects comes from Baltagi et al. [7]. The authors are also
confronted with a geo-referenced house transaction dataset, but they consider
the hierarchical structure of the data. As a result, the data take the structure
of a unbalanced pseudo-panel. Concerning the model, spatial correlation is
captured by time-varying spatial weights matrices and temporal variability is
captured by time fixed dummy variables. Nevertheless, temporal correlation
is not considered in the model.

Notably, the above-mentioned models are estimated via the frequentist
approach including maximum likelihood or restricted maximum likelihood
(REML). However, regarding the uncertainty and model complexity, Bayesian
inference may be a better choice [11, 31, 47]. To be more precise, the model pa-
rameters are considered as random variables in the Bayesian approach. Hence,
both information in data and priori knowledge is absorbed into the posterior
distribution of the model parameters.

Weller [47] holds the view that Markov Chain Monte Carlo (MCMC) meth-
ods have advantages over likelihood-based methods in fitting a linear mixed
model because of considering the uncertainty of the interested parameters.
According to Browne and Draper [11], both the MCMC and likelihood-based
methods provide unbiased point estimates when they fit a two-level variance-
components model with a large dataset. By contrast, when they fit a three-
level logistics regression model, MCMC methods outperform likelihood-base
methods in respect of the unbiased point estimates and coverage of interval
estimates for random-effects variances.

Recent research [31] has suggested that INLA is an alternative of MCMC
and REML methods in fitting a linear mixed model with multiple random
components. INLA is remarkably efficient comparing with MCMC methods;
whilst, it provides the accurate point estimates. According to another study
[23], INLA-SPDE is an alternative of REML in fitting a linear mixed model
including spatial random components. They indicate that INLA-SPDE can
provide the robust estimates in the context of a small sample size. Additionally,
it is likely that INLA-SPDE can handle the data followed a skewed normal
distribution.

After investigating the advantages and drawbacks of the models mentioned
above and the estimation, we will introduce the hierarchical spatiotemporal
model, which is deemed as an extension of the geoadditive model. The fact
is that we replace the kriging component in Kammann and Wand’s model
[24] with a spatiotemporal Gaussian Random Fields (GRFs) component so
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that we can gauge spatiotemporal random effects and repeated cross-sections
simultaneously. It is believed that the hierarchical spatiotemporal model is
more flexible than the spatial econometric models. Additionally, the estimation
is done via the INLA-SPDE approach.

3 Method

3.1 Spatiotemporal data

Before reviewing the hierarchical spatiotemporal model, we will concentrate
on data types. Palmquist [34] states that most HPM-based property valuing
studies use micro-data. Dubé and Legros define the micro-data as

“Observations that are points on a geographical projection...”. [20, p. xi]

The definition implies that the geographical coordinates of properties are
stored in the micro-data. From a geostatistical perspective, the micro-data
pertain to the geostatistical data. It is a widely held view that such data can
be considered as a stochastic process indexed on a continuous plane2 [3, 46].
Further, regarding time dimension, the stochastic process can be indexed both
in space and time.

Hence, we assume that y (si, t) denotes the realization of the stochastic
process, which describes the housing transaction price of house i = 1, . . . , n at
location si with instant or span t = 1, . . . , T .

3.2 Hierarchical models with space-time random effects

Bayesian hierarchical models are proposed finding housing price determinants
and predicting house prices [36]. However, they have not been widely adopted
due to high computational costs and complex estimation procedures. By con-
trast, hierarchical models can handle complex interactions via random com-
ponents, which is determined by another regression model (see Lang et al. [27]
for more details).

The proposed Bayesian hierarchical spatiotemporal model is derived from
a modified ARHIER3 model [40]. The key point is that this model involves
a spatiotemporal random component defined by a first-order autoregressive
(AR(1)) process in the next stage. More importantly, this spatiotemporal ran-
dom component is devoted to capturing correlation in space and over time.

The first stage of the proposed model is written as

y(si, t) = z(si, t)β + ξ(si, t) + ε(si, t) (1)

2 E.g., a random field (RF)
3 ARHIER stands for hierarchical autoregressive models.
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where z(si, t)
4 is the vector of covariates referring to fixed effects and ε(si, t)

is the measurement error following a Gaussian distribution. ξ(si, t) is the space-
time random component defined by a GRF varied over time. Thus, the second
stage is used to depict the time-dependent GRF, which is assumed to be

ξ(si, t) = aξ(si, t− 1) + ω(si, t) (2)

where ω(s, t) is a time-independent GRF, whose covariance matrix is de-
scribed by a Matérn covariance function.

Cov (ω(si, t), ω(sj , t
′)) =

{
0 if t 6= t′

σ2
ωC (‖si − sj‖) if t = t′

Where C (‖si − sj‖) denotes the Matérn correlation function, which de-
pends on ‖sj − si‖.5 ‖sj − si‖ is the Euclidean distance between the observa-
tion i and j. Notably, the Matérn correlation function implies that the spatial
process is assumed to be second-stationary and isotropic [17]. Subsequently,
the Matérn covariance function reads

σ2
ωC (‖si − sj‖) = σ2

ω ×
21−ν

Γ (ν)
× (κ× ‖si − sj‖)ν ×Kν (κ× ‖si − sj‖) (3)

where Γ is the gamma function. Kν is the modified Bessel function of the
second kind with order ν. Generally, the ν is the smoothness parameter and is
a non-negative number.6 κ is the scaling parameter and is also a non-negative
number. Based on the empirically derived definition [28], the relation among
κ, ν and r is expressed as:

r =

√
8ν

κ

where r indicates the distance where spatial correlation diminishes to 0.1.
Concerning the former part of In Eq. 2, a is the autoregressive parameter

with |a| < 1. More importantly, to implement the model on software package
R-INLA [30], we actually add a

√
1− a2 term before ω(s, t) to ensure the

stationary of the AR(1) process.
Since ξ(si, t) represents the spatiotemporal GRF. Thus, its space-time sep-

arable covariance matrix of ξ(si, t) is defined as,∑
ξ =

∑
T

⊗ ∑
S

where
∑
T is the covariance matrix for the temporal process and

∑
S is the

Matérn covariance matrix for the spatial process.
⊗

is the Kronecker product.
Therefore, we gauge the correlation in space and over time.

4 z (si, t) = (z1 (si, t) , . . . , zp (si, t))
5 i 6= j
6 Based on Eq. 5, we have ν = α− d

2
. In Eq. 3, d equals 2 and hence ν = 1.
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3.3 INLA-SPDE approach

Fitting the proposed Bayesian hierarchical spatiotemporal model is challeng-
ing, in particular, the “big n problem” [8] probably emerges.

Several solutions have been proposed to overcome these issues. Bakar and
Sahu [5] develop the “spTimer” package7, where they employ the MCMC
approach with a low-rank approximation framework. A recent solution is to
apply the INLA-SPDE approach. Apart from the advantages such as consid-
eration uncertainty and low computational costs, the INLA-SPDE approach
can estimates spatial range and other hyperparameters automatically. Further,
the SPDE approach is devoted to computing complex spatiotemporal random
effects and then the hierarchical models are fitted by INLA.

Let us now compute the spatial random component in the hierarchical
models. Relying on the Matérn covariance function for the GRF and intro-
ducing a Markovian property, the values at each location will be conditional
independent and then the dense Matérn covariance matrix will be substituted
by a sparse precision matrix. To conclude, the GRF will be approximated by
a GMRF to speed up the calculation. Currently, the difficulty becomes how
to define that GMRF, which is the best substitution for the GRF, given local
neighbourhood and the sparse precision matrix. Lindgren et al. [28] propose
using the SPDE approach.8 The numerical resolution of the SPDE given by
the piecewise linear basis functions based on a mesh9 can provide a good ap-
proximation to the Matérn covariance.

INLA will take over the following task. Introduced by Rue et al. [39],
INLA produces posterior distribution of the interested parameters based on
conditional probability rules and Laplace approximations (see Blangiardo and
Cameletti [10] for more details).

4 An applied illustration using the Corsican apartment market

4.1 Background

Our study focuses on Corsica, one of the 18 French administrative regions, it
is an island situated in the Mediterranean Sea.

As a “mountain in the sea”, one mountain range crosses the island from
north to south, while flat areas or beaches are located at the edge of the
island. Due to the particular mountainous topography, inhabitant activities are
widely affected. On the island scale, the population distribution and population
density express the significant spatial heterogeneity and spatial correlation.10

7 According to the algorithm, the computational complexity of fitting the model reduces
to O(p3) with p� n.

8 Appendix 6.1 gives more details about the INLA-SPDE approach.
9 We define a large number of non-overlapped triangles over the study area and the

aggregate of the non-overlapped triangles is called a mesh.
10 For instance, Bastia and Ajaccio are the capital cities of upper Corsica department

and south Corsica department. 43% of the inhabitants live there. Other cities, such as
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Furthermore, public services and infrastructure also display the strong spatial
heterogeneity and spatial correlation. Hospitals, high schools and shopping
malls are spatially centered in the cities, while villages lack public and private
goods. This context may affect the local property prices.

4.2 Data

We use the dataset extracted from the “PERVAL” database. This database
contains all information on property transactions, property attributes as well
as buyers and sellers profiles. Additionally, most observations in the database
are geo-referenced and therefore spatial analysis is used.

After removing the apartments with missing characteristics and eliminating
the apartments corresponding to the tails11 of the price distribution, there are
7634 observations spanning from 2006 to 2017.

The key variables of the dataset include the sale price, apartment structural
characteristics and accessibility variables. The description of all variables is
listed in Table 1.

The summary statistics of all continuous variables are presented in Table
2.

4.3 Empirical strategy

One objective of this study is to compare the prediction accuracy of different
models that delineate the impacts of space and time in different ways. To meet
this goal, we examine four models with different specifications. Starting from a
linear additive model, we then add different random components, e.g., a spatial
random component, spatial and temporal random components jointly and a
spatiotemporal random component. The summary of the random components
involved in the hierarchical models is displayed in Table 3.

Let us explore these models in more detail. The dependent variable, the
transaction price of an apartment in Euros, is transformed into a logarithmic
scale. The application of the logarithmic transformation is not only intended
to stabilize the variance of the dependent variable, but also to make its distri-
bution approximately normal.

The base model (M0) is a linear additive model. You can find all apartment
structural variables and accessibility variables in the model, but there are not
any spatial or temporal random components.

Porto-Vecchio, Calvi, Corte, Ghisonaccia, L’̂Ile-Rousse, Penta-di-Casinca and Propriano,
are inhabited by 36% of the population [16].
11 Since there are outliers, we exclude the observations whose prices are above 95% and

below 5% of the price distribution.
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Table 1 List of hedonic variables with description

Variable Abbreviation Description/Unit

STRUCTURAL ATTRIBUTES
Room RO Number of rooms
Bathroom BATH Number of bathrooms
Garage GAR Number of garages
Floor FL Number of floors

Living area SURF Square meters (m2)

Apartment type AT
Standard apartment
(reference) SA

Duplex apartment DU
Studio apartment ST

Construction period CP
1850-1913
(reference) PERIOD A

1914-1947 PERIOD B
1948-1969 PERIOD C
1970-1980 PERIOD D
1981-1991 PERIOD E
1992-2000 PERIOD F
2001-2010 PERIOD G
2011-2017 PERIOD H

ACCESSIBILITY VARIABLES
Distance to the nearest
beach DBEAD kilometres (km)

Distance to the nearest
health facility DHealFac kilometres (km)

Distance to the nearest
public primary school DPuPriSch kilometres (km)

Table 2 Descriptive statistics for hedonic housing prices in Corsica

Mean St. Dev. Min Pctl(25) Pctl(75) Max

Transaction
Price

149467.08 58483.01 57445.76 100000 185347.95 325431.67

log(Transaction
Price)

11.84 0.39 10.96 11.55 12.13 12.69

ROOM 2.672 0.967 0 2 3 8
BATHROOM 1.053 0.259 0 1 1 3

GAR 0.795 0.712 0 0 1 8
FLOOR 1.849 1.731 −3* 1 3 12
SURF 59.315 22.191 6 43 73 197

DBEAD 3.782 7.153 0.001 1.040 3.561 52.008
DHealFac 10.421 12.099 0.051 1.636 16.461 72.244

DPuPriSch 1.347 1.698 0.0001 0.469 1.544 39.513

N=7634; St. Dev.=standard deviation;
Pctl(25)=25% quantile; Pctl(75)=75% quantile;
∗The negative number appears because there are ”souplex” apartments.



Time, space and hedonic prediction accuracy 11

Table 3 Summary of random components in the hierarchical models

Model Identifier M0 M1 M2 M3

Spatial None ξ (si)
* ξ (si)

* None
Temporal None None µ (t) None
Spatiotemporal None None None ξ (si, t)

* ξ (si) is a time-independent GRF.

log(TransactionPrice) = β0 + β1RO + β2BATH + β3GAR+ β4FL

+ β5AT + β6CP + β7DBEAD

+ β8DHealFac+ β9DPuPriSch

+ f (SURF )

where the living area is modeled as a nonlinear covariate regarding residuals
and the literature [7, 43]. Concerning the nonlinear specification f (·), the
default first-order random walk (RW1) smoother in R-INLA is used.

The second model (M1) is a combination of the first model (M0) with a spa-
tial random component, also known as the time-independent GRF. This model
is equivalent to the geoadditive model proposed by Kammann and Wand. In
particular, the temporal dimension is collapsed to “zero thickness”. In other
words, time is still there, but it is expressed on a plane.

Based on M1, the third model (M2) involves an additional temporal ran-
dom component µ (t). Notably, spatial and temporal effects are investigated
jointly in this model. It is reasonable to consider the impacts of time on apart-
ment sale prices even if we have already removed the effects of inflation. We
intend to gauge the temporal correlation via an AR(1) process on the ordinal
quarters and thus, M2 also formulates into a two-level hierarchical model.

µ(t) = N
(

0,
(
τ
(
1− ρ2

))−1)
, t = 1

µ(t) = ρ× µ(t− 1) + ε(t), ε(t) ∼ N
(
0, τ−1ar1

) (4)

where ρ is the autoregressive parameter and ε is the measurement error
with precision τar1.12 In our case, there are 48 quarters spanning from the first
quarter of 2006 to the fourth quarter of 2017.

Finally, M3 is the hierarchical spatiotemporal model introduced in subsec-
tion 3.2. It can be considered as an improvement of M1 in the sense that the
time-independent GRF is replaced by a time-dependent GRF.

12 e.g., an inversion of the covariance matrix
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Table 4 Priors for hyperparameters of the hierarchical model

Parameters in
the models

Prior
specification*

τrw1 for precision of Surface (1, 0.5)
Mean of spatial range, r (20, 0.8)

σω for spatial effect (0.4, 0.2)
a for the AR(1) parameter in Eq.2 (0.5, 0.7)
τar1 for precision of AR(1) in Eq.4 (5, 0.1)
ρ for the AR(1) parameter in Eq.4 (0.5, 0.7)

* All priors are PC priors.

4.4 Implement details

Before running all candidate models, we highlight two key points, the mesh
and prior. It is worth noting that the spatial covariance is evaluated using
the SPDE approach. Through a triangular mesh, SPDE can define a GMRF
to approximate the continuous GRF across the study area and hence, the
discretely indexed GMRF reduces computational intensity.

For this study, we construct a non-convex hull mesh, as shown in Figure
1. Considering distances among housing locations and Corsican city sizes, we
set the maximum triangle length to 10 km13 in the interior domain, while the
length is specified to 50 km in the outer extension to avoid boundary effects
[6]. To reach a compromise between the dense housing locations in urban areas
and too many tiny triangles, minimum distances among points are specified
to 0.1 km. Lastly, we obtain the mesh containing 3117 vertices of triangles.

One advantage of Bayesian modeling is the inclusion of priori knowledge.
In this study, we select the default penalized-complexity priors (PC priors) in
INLA for all hyperparameters. A list of priors is shown in Table 4.

Concerning the RW(1) structure for the “living area” variable, we postulate
that the prior follows Prob(τrw1 > 1) = 0.5.14

We assume the prior Prob(r < 20) = 0.8 for the mean posterior of the
spatial range with units in kilometres. We also assume the prior Prob(σω >
0.4) = 0.2 for the mean posterior standard deviation of the spatial effects.

Concerning the AR(1) parameter in Eq.2, the prior is set to Prob(a >
0.5) = 0.7. We also posit the priors Prob(τar1 > 5) = 0.1 and Prob(ρ > 0.5) =
0.7 in Eq.4.

Turning now on the model performance, the model assessment is based
on the deviance information criterion (DIC) and the conditional predictive
ordinate (CPO), which are directly obtained from R-INLA output [22].

13 We convert the original map projection to the Universal Transverse Mercator (UTM)
projection with 1-kilometre distance unit.
14 Prob refers to the probability. τrw1 is the precision parameter.
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Fig. 1 The mesh. The boundary of Corsica is delineated in green and the
sampled apartments are dotted in red. The inner black line distinguishes the
inner mesh and the outer mesh.

DIC is a popular criterion to evaluate Bayesian hierarchical models pro-
posed by Spiegelhalter et al. [45].

DIC = D + pD

Where D is the posterior mean of deviance of the model and pD is the
number of effective parameters in the model.

Introduced by Geisser [21], CPO returns a “leave one out” cross-validation
score. More precisely, CPO calculates cross-validated predictive density at each
observation. Roos and Held [37] suggest computing the mean logarithm CPO
(LCPO) score, defined as

LCPO = − 1

N × T

T∑
t=1

N∑
i=1

log (CPOit)

Lower DIC, LCPO scores indicate better-fitted models.
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Table 5 Summary of model assessment

Model DIC LCPO RMSE
Elapsed Time

(Second)

M0 1,817.711 0.119 0.2636 20
M1 −4, 561.660 −0.278 0.1849 73
M2 −4, 710.974 −0.286 0.1848 114
M3 −5197.427 −0.304 0.1835 14769

Apart from the two criteria, model predictive power is also tested by ran-
domly holding out 20% of the data. The training dataset contains the re-
maining 6107 observations. Subsequently, the candidate models predict the
responses for the holdout dataset. The root mean squared error (RMSE) is
considered to quantify prediction errors. More precisely, this criterion indi-
cates the closeness between the predicted values and the observed values in
the holdout dataset.

RMSE =

√√√√ 1

N × T

T∑
t=1

N∑
i=1

(
y (si, t)− ŷ (si, t)

)2
Lower RMSE values reflect better prediction.

Finally, analyses are carried out by using R 3.5.0 [35] and R-INLA 18.12.12
on a laptop equipped with an AMD Ryzen 5 1600 processor, 32G of RAM and
Windows 10 operating system.

4.5 Results

Table 5 displays the predictive performance for each model. The running time
of fitting each model varies from around 20 seconds to 4 hours 7 minutes.

Regarding the DIC scores, the models involving any random effect com-
ponents (M1, M2, M3) outperform the referenced model (M0). The improve-
ment of the DIC scores could be evidence of the usefulness of considering
spatial and temporal correlation in modeling. Moreover, a possible reason for
the well-fitted mixed models (M1, M2, M3) is that through random compo-
nents, observations could borrow strength from their neighbours in space and
over time. Typically, adding the spatial random component to the base model
results in a considerable improvement in model fitting (∆ = −6379.371). Addi-
tionally, the model including an additional temporal random component (M2)
leads to a further improvement (∆ = −149.314). M3 has the best goodness of
fit in respect of the DIC values (∆ = −486.453 relative to M2). The LCPO
scores display in the same sequence as the DIC values. Further, to ensure the
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robustness of our findings, we apply different mesh designs15 to the mixed ef-
fects models. The DIC and LCPO values together in the same sequence have
been observed, irrespective of the different meshes.

Concerning the model predictive performance, the RMSE favours M3 as
well. Therefore, among the candidate models, M3 is the best model to perform
both estimation and prediction.16

For these reasons, M3 is selected as the final model. It is used to deter-
mine how various characteristics affect housing market values in the following
section.

4.6 Inference based on the hierarchical spatiotemporal model

The posterior statistics, including the mean, 0.025 quantile and 0.975 quantile
of the fixed effect coefficients for M3 are displayed in Table 6.17

In general, most covariates measuring the structural characteristics of apart-
ments are significant with the expected signs, but several accessibility variables
are not significant.

As expected, everything else remains the same, an additional room, bath-
room, garage, floor and surface area on the logarithmic scale generally improve
the apartment price. Moreover, the apartment built in the early year is likely
cheaper than the recently built apartment.

For example, an additional room, bathroom, garage and floor could increase
the expected apartment price by respectively 1.9% (95% CI, 0.010; 0.029)18,
5.1% (95% CI, 0.033; 0.069), 4.9% (95% CI, 0.040; 0.058) and 2.0% (95% CI, 0.017; 0.023).

Typically, all things being equal, the duplex apartment is likely to be more
expensive than the standard apartments with the gap of 3.4% (95% CI, 0.009; 0.059);
whereas the studio apartment price could be 10.0% (95% CI,−0.125;−0.075)
lower than the standard apartment price.

The expected price of the apartment built in the 1992-2000 period is 10.3%
(95% CI, 0.036; 0.169) higher than the one built in the 1850-1913 period; Com-
pared to the price of the apartment built in the 1850-1913 period, the expected
price of the apartment built in the 2001-2010, 2011-2020 period would increase
22.1% (95% CI, 0.154; 0.284) and 22.4% (95% CI, 0.169; 0.299), respectively.
It is believed that people prefer to live in the newly-built apartment rather
than the older one.

According to the hedonic price theory, a positive coefficient for the living
area would be expected. In Figure 2, although we observe an overall increas-
ing trend over the whole range, there are some significant troughs and turning

15 We try different meshes containing more tiny triangles. For all candidate models, the
results are very close and all signs keep the same, but the computational time increase
dramatically.
16 Regression results of all candidate models are shown in Table 7.
17 The prior and posterior distributions for the hyperparameters in M3 are displayed in

Figure 4.
18 CI stands for credible interval.
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Table 6 Posterior estimates (mean and 95% interval ) of the covariate coeffi-
cients in model M3

mean
0.025
quant

0.975
quant

Intercept 11.733 11.637 11.830
ROOM 0.019 0.010 0.029

BATHROOM 0.051 0.033 0.069
GAR 0.049 0.040 0.058

FLOOR 0.020 0.017 0.023
DU 0.034 0.009 0.059
ST −0.100 −0.125 −0.075

PERIOD B −0.003 −0.066 0.060
PERIOD C −0.018 −0.078 0.042
PERIOD D 0.018 −0.043 0.079
PERIOD E 0.038 −0.023 0.099
PERIOD F 0.103 0.036 0.169
PERIOD G 0.221 0.158 0.284
PERIOD H 0.224 0.161 0.287

DBEAD −0.016 −0.021 −0.012
DHealFac 0.002 −0.005 0.010

DPuPriSch −0.001 −0.003 0.001
SURF σ2

rw1 0.033 0.019 0.054

σ2
ε 0.025 0.024 0.026

σ2
ω 0.108 0.090 0.125

Spatial Range (km) 1.484 1.291 1.698
AR(1) 0.991 0.988 0.994

points. A probable interpretation for these is given as follows. From 6 to ap-
proximately 20 m2, there is a strong effect of decreasing marginal prices. The
target clients for the small apartment would be low-income and young peo-
ple, whose budget is relatively low. Additionally, the small apartment may be
correlated with unattractive interior designs, which are not measured in our
samples. Another remarkable turning point is 160 m2. According to the statis-
tic descriptive in Table 2, the upper range from 160 to 197 m2 is in the tail of
the samples. Furthermore, the large standard deviation may also be evidence
of the turning point.

The proximity to the nearest beach has a significantly positive effect on the
apartment price. If the distance between an apartment and its nearest beach
increases by 1 km, the expected apartment price is estimated to decrease
by 1.6% (95% CI,−0.021;−0.011). It is reasonable that the proximity to the
nearest beach is capitalized into the apartment price [26].

Unexpectedly, insignificant relations are observed between the distance to
the nearest public high school and apartment prices, between the distance
to the nearest health facility and apartment prices. The insignificance of the
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Fig. 2 Empirical mean and a 95% credible interval (the green area) of the
living area

proximity to a public primary school may be because the local government pro-
vides perfect school bus services and some parents pick up their children from
school. It is a widely held view that a public hospital is an amenity. However,
according to our findings, it is likely that the closeness to a public hospital is
not capitalized into the Corsican apartment price. A probable explanation is
that a hospital may cause a large volume of traffic in the neighbouring areas.
People living around may hear ambulance sirens every day. Additionally, in
France, a patient usually makes an appointment to see his family medicine,
rather than go to hospital directly.

In summary, the Corsican apartment price from 2006 to 2017 is largely
determined by the structural and accessible characteristics.

As seen in the lower part of Table 6, we find that the majority of the
remaining variance is due to the variance of the spatiotemporal process σ2

ω,
rather than the variance from the measurement error term σ2

ε . Note that the
estimate of σ2

ω is over four times greater than the estimate of σ2
ε . Again, this

finding demonstrates that the Corsican apartment price is partly determined
by the spatiotemporal structure.

For model M4, we find the mean posterior spatial range is 1.484 km
(95% CI, 1.291; 1.698), meaning that the distance at which mean spatial cor-
relation declines to 0.1 is 1.484 km. In other words, the spatial correlation
decreases rapidly with distance. The mean posterior AR(1) coefficient is 0.991
with (95% CI, 0.988; 0.994). This indicates that the spatial random effects
change rather slowly from quarter to quarter.

To further explore the spatiotemporal random effects (ξ (si, t)), we decided
to plot the posterior mean of the spatial random fields in some quarters in
Figure 3. This figure gives us the first impression that the spatial correlation
of apartment prices across the island is relatively constant from one quarter to
the next. It is thought that the constant spatial correlation over time clearly
shows the high AR(1) coefficient.
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Fig. 3 Time-sliced plots displaying the posterior mean of spatiotemporal ran-
dom effects. 2006 Q1 refers to the first quarter of the year 2006. We observe
that the clusters near the island center change over time regarding the colour
and surface.

We also observe several clusters. Inside these clusters, apartment prices
are significantly affected by their location. In other words, the apartments
located inside these clusters are spatially correlated in terms of prices. In
general, most clusters are situated on the coastal plains. A few clusters are
dotted in the junctions between the coastal plains and the inland area. More
specifically, the cluster in which apartment prices are positively affected by
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their location is called a “hotspot”. Delving more deeply, if an apartment is
located in a hotspot, the location will generate an additional increase on its
price. In Figure 3, clusters in warm colours are hotspots. In contrast to the
“hotspot”, the cluster in which apartment prices are negatively affected by
their location is deemed a “cold spot”. In Figure 3, these clusters are plotted
in cold colours. The “cold spots” include the eastern coastline and the whole
northern tip of the island, whereas the “hotspots” include the northwestern
area and the western coastline. Furthermore, the “cold spots” and “hotspots”
near the coast evolve slowly over time. By contrast, the “hotspots” located in
the inland area change relatively fast.

To gain further insight into the impact of location on apartment prices,
we take an anti-logarithm, such that the exponential of the spatiotemporal
random component works as a multiplication factor rather than an additional
term in Eq.1.

Concerning the scale of Figure 3, it varies from −0.8 to 0.6 approximately,
which means that in some “hotspots”, the location may increase the expected
apartment price up to 82.21%19. However, in some “cold spot” zones, the lo-
cation probably causes a 55.06%20 reduction in the expected apartment price.
This result clearly shows that the apartment location is a crucial factor in
apartment price.

5 Conclusion

We propose using a powerful framework to study apartment prices. The frame-
work relies on the flexible Bayesian hierarchical models and two novel data
fitting techniques, INLA and SPDE.

To illustrate this framework, we investigate the Corsican apartment market
using a unique dataset on the apartment transactions from 2006 to 2017.

We initially propose a set of the Bayesian hierarchal models incorporating
spatial, temporal and spatiotemporal random components. All models are fit-
ted by the recently-developed INLA and SPDE statistical approach. Fitting
these models usually requires large computational resources and long running
time, but the INLA SPDE approach addresses these problems by numerical in-
tegration and GMRFs. Thus, the approach provides fast and reliable Bayesian
inference under affordable computing power. Additionally, through a model
comparison, we demonstrate that the Bayesian hierarchical spatiotemporal
model outperforms other mixed models and the linear additive model regard-
ing the model predictive performance. The fact of such high performance is
that observations borrow strength from their neighbours over space and time.

According to the results, it can be confirmed that most apartment at-
tributes and the proximity to the nearest beach significantly affect the apart-
ment price. In particular, we point out the nonlinear relation between the

19 Note that if the logarithmic scale equals 0, there will be no impacts from the spatial
random effects. Therefore, exp(0.6)-1= 0.8221
20 exp(−0.8)-1=-0.5506
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living area and apartment price. Additionally, regarding the spatial relations,
we specify several “hotspots” and “cold spots”, where the apartment prices
are significantly affected by their locations. Moreover, in general, the location
of the “hotspots” and “cold spots” keeps stable over time. This phenomenon
reflects that the mean posterior AR(1) value is high.

Currently, the INLA-SPDE approach is not widely seen in the hedonic
pricing literature. We suggest that researchers consider both the Bayesian spa-
tiotemporal hierarchical model and the INLA-SPDE approach as instruments
in their toolbox when they investigate real estate economics and predict house
prices.
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6 Appendix

6.1 SPDE

The expression of the SPDE in two dimensions is written as(
κ2 −∆

)α/2 × ξ (s) = W (s)

α = ν +
d

2
, κ > 0, ν > 0, s ∈ R2

(5)

where ∆ is the Laplace operator. α is an integer with the default setting
of 2 in R-INLA. d indicates the dimension of the Euclidean space, such as
d = 2 for classical planar space. W (s) stands for the spatial Gaussian white
noise process. The stationary solution of Eq. 5 is the GRF ξ (s) with Matérn
covariance function.

To implement the SPDE approach, Lindgren et al. [28] propose a two-step
approach. At first, the entire study area is partitioned by a large number of
non-overlapped triangles.21 Then, based on the triangles, we apply a so-called
piecewise linear approach [44].

ξ (s) =
∑n
l=1 ψl (s)wl (6)

where ξ (s) is a GRF. ψl (x) is called the basis function. wl are Gaussian-
distributed weights. Therefore, given the approximation and conditional inde-
pendence, we obtain a considerable computational gain, where the computa-
tional complexity dramatically reduces to O(n3/2) flops for GMRFs and O(n2)
for temporally correlated GMRFs [13].

21 The process is also called triangulation and the aggregate of the non-overlapped triangles
is called a mesh.
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Table 7 Regression results of all candidate models (excluding M3)

M0 M1 M2
mean 0.025quant 0.975quant mean 0.025quant 0.975quant mean 0.025quant 0.975quant

Intercept 11.693 11.595 11.791 11.735 11.635 11.836 11.704 11.586 11.822
ROOM 0.014 0.001 0.027 0.018 0.008 0.027 0.018 0.008 0.027

BATHROOM 0.087 0.060 0.113 0.056 0.037 0.074 0.055 0.037 0.073
GAR 0.016 0.006 0.026 0.043 0.035 0.052 0.049 0.040 0.057

FLOOR 0.009 0.005 0.013 0.020 0.017 0.023 0.020 0.017 0.023
DU 0.057 0.026 0.089 0.035 0.010 0.060 0.035 0.010 0.060
ST -0.065 -0.100 -0.030 -0.100 -0.125 -0.075 -0.101 -0.125 -0.076

PERIOD B 0.094 0.002 0.185 0.003 -0.061 0.068 -0.001 -0.064 0.063
PERIOD C 0.081 -0.002 0.163 -0.009 -0.070 0.052 -0.014 -0.074 0.047
PERIOD D 0.158 0.076 0.239 0.029 -0.032 0.091 0.021 -0.040 0.082
PERIOD E 0.164 0.082 0.247 0.046 -0.016 0.108 0.041 -0.020 0.102
PERIOD F 0.205 0.116 0.294 0.120 0.054 0.187 0.116 0.049 0.182
PERIOD G 0.242 0.160 0.323 0.229 0.165 0.292 0.233 0.170 0.296
PERIOD H 0.239 0.158 0.320 0.232 0.169 0.296 0.217 0.154 0.280

DBEAD -0.012 -0.013 -0.010 -0.017 -0.022 -0.012 -0.017 -0.022 -0.011
DHealFac 0.019 0.015 0.022 0.003 -0.005 0.011 0.003 -0.005 0.010

DPuPriSch -0.004 -0.005 -0.004 -0.001 -0.004 0.001 -0.001 -0.004 0.001
SURF σ2

rw1 0.048 0.028 0.076 0.034 0.019 0.056 0.034 0.019 0.056

σ2
ε 0.073 0.071 0.076 0.029 0.028 0.030 0.029 0.028 0.030

σ2
ω 0.109 0.092 0.130 0.114 0.100 0.134

Spatial Range (km) 1.571 1.360 1.840 1.549 1.332 1.783
ρ 0.944 0.845 0.991
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