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Abstract 

Spatial autoregressive (AR) models can accommodate various forms of dependence among data with discrete 

support in a space, and hence are widely used in economics and social science. We examine the relationship between 

spatial (autoregressive) error models and conditional autoregressive models, considered to be the two main types 

of spatial AR models. This topic is likely incomplete in the literature and is often overlooked by econometricians. 

To further develop and broaden this topic, we demonstrate that spatial error and conditional autoregressive models 

can be made equivalent via hierarchal models, but have different variance-covariance matrices. We then propose a 

Bayesian approach, known as integrated nested Laplace approximations (INLA), to produce accurate estimates for 

these models and to speed up inferences. We also discuss how to interpret model coefficients, especially estimates 

of spatial latent effects. We illustrate the two AR models with the proposed methodology in an application to the 

second home incidence rates of Corsica, France in 2017. We find that both models can capture spatial dependence, 

but conditional autoregressive models perform slightly better and produce a higher spatial autocorrelation 

coefficient. We further illustrate estimates of latent effects by identifying several “hot spots” and “cold spots” in 

terms of second home incidence rates. 
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approximation; Corsican second home incidence rate 

 

Introduction 

After decades of development, spatial econometrics has become the dominant approach in exploring spatial 

interactions in economics and other social science, such as identification and quantification of neighbourhood 

effects, spatial externalities and network effects (Anselin, 2010; Brueckner, 2003; Dubin et al., 1999). Tobler's first 

law of geography states that spatial units that are close together tend to have more similar values than those farther 

away. As a result, ignoring underlying spatial processes, omitting unobserved externalities or misspecifying 

spatially delineated variables in classical linear regression should yield non-spherical residuals, and further larger 

standard errors. That is to say, the classical estimator, like the OLS, is inconsistent and inefficient here. To address 

this issue, researchers often use spatial autoregressive (“AR") models with a specific variance-covariance matrix 

that is assumed to follow the spatial ordering of the observations. 

The two most common spatial “AR” models refer to spatial autoregressive error models1 (SEMs) (Anselin, 1988) 

and conditional autoregressive models for latent variables 2  (CAR) (Besag, 1974). The SEM, incorporating 

simultaneous autoregression on the random disturbances, is often referred to as a spatial econometric model (LeSage 

and Pace, 2009). It offers a straightforward way to address spatial effects. The CAR model, however, is popular in 

disease mapping and ecological research (Lee, 2011). As a spatial statistical model, it handles spatial effects via 

conditional distributions and allows for good prediction (See Figure 1 for a detail description.). 

 

                                                      

 

1 Hereafter the spatial error model. 

2 Hereafter the conditional autoregressive model. 
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Figure 1. The relationship among spatial “AR” models. According to the nature of the spatial interaction effects 

considered, spatial “AR” models can be divided into different classes, such as the model contains spatially lagged 

dependent variables (spatial lag model) and spatially auto-correlated disturbances. In this study, we focus on the 

model incorporating spatial error autocorrelation. 

 

Several scholars (Griffith and Paelinck, 2007; Kauermann et al., 2012) have argued that in a broad sense, it is 

difficult to bridge the gap between spatial econometrics and spatial statistics, since they have different objectives 

and further lead to different interpretations. Nevertheless, as the two most common classes of models for areal data, 

it deserves to compare them. To our knowledge, few researchers have focused on this topic. Wall (2004) looked into 

the relationship between SEM and CAR models regarding their spatial autocorrelation parameters, and showed that 

for a given 𝜌, the marginal correlation augmented faster in SEMs than in CAR models. Ver Hoef and his collegues 

(2018) investigated the two models via mathematical properties of their covariance matrices and demonstrated the 

equivalence of SEMs and CAR models under several conditions. However, econometricians often employ SEMs 

rather than CAR models, and look over the implicit relation between the two models. Moreover, inference on these 

models often falls into a classical framework, such as the maximum likelihood method or the generalized method 

of moments, but Bayesian approaches to spatial models are relatively few. Last but not least, little attention is paid 

to how the result of these models should be interpreted. Hence, the objective of this article is threefold. 

First, we integrate both SEMs and CAR models into a hierarchical modeling framework. More importantly, we 

show that the SEM model, with the exception of its spatial covariance structure, is identical to the CAR model for 

modeling non-Gaussian distributed geographic data, i.e., data with a Poisson, binomial, or negative binomial 

distribution. Second, we investigate the estimation techniques for the two models. In particular, with the recent 

advances in Bayesian computing, the integrated nested Laplace approximation (INLA) is proposed to fit these 
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models. Third, we discuss the economic interpretation of spatial components. 

Regarding the contribution of this study, we initially bridge the gap between SEMs and CAR models by employing 

the hierarchical modeling framework for several count data families. For statistical inference, we use hierarchical 

models coupled with Bayesian approaches as an alternative to likelihood-based estimation for obtaining the 

coefficients of SEMs. In particular, INLA has been used in various disciplines, including ecology (Beguin et al., 

2012) and epidemiology (Moraga, 2019), but to the best of our knowledge, it has been overlooked in spatial 

econometrics. As such, it is novel for spatial econometrics in general. Lastly, we go into the economic interpretation 

of spatially-structured random components, which has received little attention in the literature. Although there are 

no indirect (spillover) effects (Elhorst, 2010) in these models, we suggest that the spatial component can be 

interpreted as local or neighbourhood shocks diffused as a result of geographical closeness (Ertur et al., 2006), 

rather than the common shocks in the literature (Andrews, 2005). With the greater availability of geo-referenced 

data nowadays and a growing interest in spatial modeling, our work would advance the knowledge of spatial 

autoregressive models and thus enrich the field of spatial econometrics. 

 

Review of SEM and CAR models 

Before delving into the two “AR” models, we examine the associated data type. First, AR models are designed for 

data or a process that contains the information from observations in a space of interest (spatial domain). Second, 

these data or processes have discrete spatial support, meaning that the information 𝑝(𝒌) 𝒌 = 1 … , 𝐾, is collected 

correspondingly to areal units 𝐒 = {𝑆1, … , 𝑆𝐾} with exact boundaries. The aggregation of these areas makes up the 

entire spatial domain 𝒟 (𝒔 ∈ 𝒟 ⊂ ℝ2). In spatial statistics, these data are called areal data or lattice data (Wikle et 

al., 2019). In economics, examples of areal data include the regional GDP, the poverty rate in census tracts, or 

bilateral trade volumes per country (Baltagi et al., 2008; Le Gallo and Ertur, 2003). Due to the Tobler’s law, it can 

be expected that spatial autocorrelation appears in the data and should be tackled through modeling. 
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Simultaneous autoregression 

For notation, let Z be an n-length random vector, and zi is a random variable for observations at the i th area. 

W is a n × n non-stochastic spatial weights matrix with zero diagonals. ρ is the spatial autocorrelation parameter. 

Simultaneous autoregression (Whittle, 1954) represents that the outcome at region i is simultaneously dependent 

on that at other (neighbouring) regions j  ( i ≠ j ). Following the notation above, zi  causes the simultaneous 

autoregression of each random variable on its neighbours (zi = ρ ∑ 𝑤𝑖𝑗𝑧𝑗
𝑚
𝑗∈𝜕𝑖

+ ηi )
3 . In matrix notation, this is 

equivalent to Z = ρWZ + Η, with the vector of disturbances Z. We typically rely on normal assumptions for the 

residual term Η, with E(Η) = 0 and Cov(Η) = 𝜎𝜂
2𝐼𝑛. After some matrix algebra, this equation follows as: 

Z − ρWZ = Η. 

If the matrix I − ρW is invertible, we have 

Z = (I − ρW)−1Η. 

Thus, Z has mean E(Z) = 0, but its covariance takes the form Cov(Z) = 𝜎Z
2((𝐼 − ρW)(𝐼 − ρ𝑊′))

−1
. 

 

Conditional autoregression 

The conditional autoregression was proposed by Besag (1974). Wall (2004) stated that both simultaneous and 

conditional autoregression took ideas from autoregressive time series models. Simultaneous autoregression is 

analogous in its functional form, but conditional autoregression is analogous in its Markov property. As such, in an 

auto-normal CAR process, the spatial dependence between a pair of region i  and region j  is modelled 

conditionally as a normal random variable. In the full conditional distribution of z𝑖, the mean value is a linear 

combination of the neighbouring values. Its variance is associated with the values in the ith row of W, and hence 

is nonstationary. 

                                                      

 

3 LeSage and Pace (2009) called it the spatial autoregressive process. 
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z𝑖|z𝑗,𝑖≠𝑗  ∼  𝒩 (𝜌 ∑ 𝑤𝑖𝑗𝑧𝑗

𝑚

𝑗∈𝜕𝑖

, 𝜎𝑖𝑖
2) 

where 𝜕𝑖  denotes the index of neighbours of region 𝑖 . Besag (1974) proved that the joint distribution was 

multivariate normal using Hammersley–Clifford theorem, 

Z ∼ MVN(0, 𝜎z
2Σ𝐶𝐴𝑅)

Σ𝐶𝐴𝑅 = (𝐷 − 𝜌𝑊)−1 , 

where 𝐷 = 𝑑𝑖𝑎𝑔(𝑚𝑖𝑖) is a n × n diagonal matrix with 𝑚𝑖𝑖 indicating the number of neighbours for region 𝑖. 

For a validated conditional autoregressive covariance matrix, Σ𝐶𝐴𝑅 must be symmetric and positive definite. 

In short, the conditional autoregression implies the full distribution of a random vector that after a spatial 

transformation yields a multivariate normal distribution with the CAR covariance specification. While, the 

simultaneous autoregression begins with 𝑖. 𝑖. 𝑑. disturbances that after a spatial transformation yields a multivariate 

normal distribution with the SAR covariance specification. 

 

SEMs for count data 

Considering that some hidden effects spread across (spatial) units, but are omitted in regression models. To account 

for this bias, classical regression models incorporate simultaneous autoregression for disturbances, resulting in the 

SEM. 

To illustrate the specification of SEMs, we consider the first case of using a binomial distribution as the likelihood 

function for the outcome variable Y ∼ Binomial(n, θ) . The classical approach to induce the structural form of 

SEMs is given, 

μ = X𝛃 + Z 1 

Z = ρWZ + Η, H ∼ N(0, 𝜎Z
2) 

μ denotes the log odds (log (
𝜃

1−𝜃
)). Linear predictors contain a series of covariates X and a SAR component (Z) to 

capture the spatially-structured latent effects. 

The second approach derives the reduced form of SEMs. That is, the above-mentioned random vector Z is inserted 

in the Eq.1 directly, 
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Y ∼ Binomial(n, θ), 

log (
𝜃

1 − 𝜃
) = μ, 

μ = X𝛃 + Z, 

Z ∼ MVN(0, 𝜎Z
2Σ𝑆𝐴𝑅),

Σ𝑆𝐴𝑅 = 𝜎Z
2((𝐼 − ρW)(𝐼 − ρ𝑊′))

−1
.
 

The second representation reduces to a generalized linear mixed model (GLMM) (Mcculloch and Neuhaus, 2014), 

where Xβ is the fixed covariate effect and Z is the individual-specific random intercepts assumed to follow a 

multivariate normal distribution. The positive definite covariance matrix Σ𝑆𝐴𝑅  captures the spatial dependence 

across the individuals. As such, the similarity between the SEM and the GLMM can be seen. In fact, for the Bayesian 

version of these GLMMs, a latent variable representation can be used to facilitate computation when fitting the 

model. 

 

CAR models 

As previously stated, conditional/simultaneous autoregression can be used to assess spatial dependence, and SEMs 

for count data are shown to be a subset of GLMMs. CAR models can easily be applied in a GLMM, and act as a 

prior distribution for random effects. Such a specification has been popular for decades in the statistical literature, 

known as the “BYM” model (Besag et al., 1991) and its variants. Similar to the reduced form of SEMs, the GLMM 

with CAR random effects for binomial outcomes takes the form: 

Y ∼ Binomial(n, θ), 

log (
𝜃

1 − 𝜃
) = μ, 

μ = X𝛃 + Z, 

Z ∼ MVN(0, 𝜎z
2Σ𝐶𝐴𝑅)

Σ𝐶𝐴𝑅 = (𝐷 − 𝜌𝑊)−1.
2 

In short, both SEMs and CAR models for count data belong to the GLMM framework in terms of the model 

specification, and spatial dependence is captured by a random effect component. 
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Conditional autoregression and simultaneous autoregression in 

hierarchical models 

In what follows, we focus on the use of SEMs and CAR models within the hierarchical modeling framework. As 

previously stated, both SEMs and CAR models can be represented as GLMMs. It is also easy to rewrite a GLMM 

in a three-stage hierarchical formulation. Following the binomial case above, we have 

𝑌 ∼ 𝜋(𝑦𝑘|𝒙)  −  𝑑𝑎𝑡𝑎 𝑚𝑜𝑑𝑒𝑙

𝒙|𝜃1 ∼ 𝒩 (0, 𝑸−1
)  −  𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙

𝜽 = 𝜃1 = {𝜎𝛽
2 , 𝜌, 𝜎z

2}  − ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

3 

This formulation avoids complications arising in fitting SEMs and CAR models directly, since the spatial 

dependence structure of the outcome is modelled through the process model (i.e., the latent process) rather than the 

data model (i.e., the likelihood). More specifically, in the data model, 𝑦𝑘  is assumed to be conditionally 

independent, given the latent Gaussian field 𝒙. The latent field 𝒙 = {𝛃, Z} contains all parameters to be estimated 

in the process model. We then impose a vague Gaussian prior to 𝛃 and a CAR or SAR prior model to Z. As such, 

the process model reads 𝒙|𝜃1 ∼ 𝒩(0, 𝑸−1), given the set of hyperparameters 𝜃1 = {𝜎𝛽
2, 𝜌, 𝜎z

2}. Note that the CAR 

and SAR priors are also known as Gaussian Markov Random Fields (GMRFs) (Rue and Held, 2005), which are 

simply high dimensional multivariate normal prior distributions with a sparse precision matrix. Due to binomial-

distributed observations, the hyperparameter vector for the whole model is equivalent to the hyperparameters for 

the latent field, thus denoting 𝜽 = 𝜃1 = {𝜎𝛽
2, 𝜌, 𝜎z

2} . Lastly, together with the likelihood, latent field and 

hyperparameters, we can derive the posterior distribution of the joint distribution, 

𝜋(𝒙, 𝜽 ∣ 𝒀) = 𝜋(𝜽)𝜋(𝒙 ∣ 𝜽) ∏  

𝐾

𝑘=1

𝜋(𝒚𝑘 ∣ 𝒙, 𝜽). 4 

 

Estimation 

Two traditional techniques for fitting SEMs and CAR models are likelihood-based methods and Markov chain 
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Monte Carlo (McMC) methods (Banerjee et al. 2014). 

Researchers can apply the conventional maximum likelihood method to fit SEMs, but modeling count data through 

SEMs requires more complex likelihood methods, such as restricted maximum likelihood (Wood, 2011) or h-

likelihood (Rönnegård et al., 2010) approaches. Regarding conditional autoregression, researchers indicated that 

applying the standard maximum likelihood was not feasible due to an awkward normalizing term appearing in 

likelihood functions, and hence Besag (1974) proposed maximum pseudo-likelihood estimation in the early years. 

With the availability of computational power, several researchers are inclined to fit SEMs through the McMC 

approach (LeSage, 2000). This approach can also be used to estimate parameters in CAR models. According to 

Besag (1974), the joint distribution shown in Eq.2 is a (Gaussian) Markov random field (MRF). Such a MRF can 

be sampled from a Gibbs distribution, and hence Gibbs sampling is suitable to fit these models. However, a major 

drawback of this approach is the speed of computation. Calculating the probability density for CAR random effects 

needs to compute the determinant of its auto-covariance matrix. This process requires 𝑂(𝑛3)  operations, and 

computation is, in particular, expensive for a large number of spatial observations. To efficiently compute 

coefficients in Eq.3, we take advantage of Markovian properties and make use of INLAs. 

The Markovian property implies that the parameter 𝜃𝑖 for the 𝑖th area is independent of all the other parameters 

𝜽−𝑖, given a set of its neighbours 𝒩(𝑖), 

𝜃𝑖 ⫫ 𝜽−𝑖 ∣ 𝜽𝒩(𝑖). 

This ensures the sparsity of the precision matrix 𝑸, where zero elements 𝑄𝑖𝑗 are only derived from 𝜃𝑖 and 𝜃𝑗 

that are independent on the planar, forming 𝜃𝑖 ⫫ 𝜃𝑗 ∣ 𝜽−𝑖𝑗  ⇔ 𝑄𝑖𝑗 = 0. Additionally, zero elements are outside the 

diagonal and first off-diagonals, which leads to the precision matrix tridiagonal. With this setting, computation is 

tractable even for extremely high dimensional parameters. To be more specific, the tridiagonal precision matrix 

enables efficient matrix operations, such as Cholesky decomposition, for calculating the determinant of the auto-

covariance matrix. For example, the probability density for that CAR random effect takes the form: 

𝜋(𝜽) ∝ |𝑸|
1
2 exp (−

1

2
𝜽𝑇𝑸𝜽) . 5 

The Cholesky factorization gives 𝑸 = 𝑳𝑳𝑇, where 𝑳 denotes the Cholesky triangle, which remains sparse. As a 

result, the complexity for calculating Eq.5 decreases from 𝑂(𝑛3) to 𝑂(𝑛3/2). We refer the readers to Rue and Held (2005) 

for a more detailed discussion. 
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The following task is taken by INLA (Rue et al., 2009), which is an efficient, full Bayesian inference approach based on 

sufficiently accurate numerical approximations. INLA derives the marginal posterior distributions of the hyperparameter 

𝜋(𝜃𝑗|𝒀) and the latent variable 𝜋(𝒙𝑗|𝒀) for Eq.4. 

This is done by integration, 

𝜋(𝑥𝑖 ∣ 𝒀) = ∫𝜋(𝑥𝑖 ∣ 𝜽, 𝒀)𝜋( 𝜽 ∣∣ 𝒀 )𝑑𝜃, 5 

𝜋(𝜃𝑗 ∣ 𝒀) = ∫𝜋(𝜽 ∣ 𝒀)𝑑𝜃−𝑗. 6 

where 𝑥𝑖 is the 𝑖th latent variable. 𝜃𝑗 is the 𝑗th hyperparameter. 𝜃−𝑗 is the complement hyperparameter vector to 

𝜃𝑗. INLA applies a three-step procedure to achieve the integration. The first step aims to calculate 𝜋( 𝜽 ∣ 𝒀 ), since 

this term serves to compute the marginal distribution of both the hyperparameter and the latent variable. It can be 

approximated by, 

𝜋̃( 𝜽 ∣ 𝒀 ) ∝
𝜋( 𝒀 ∣ 𝒙, 𝜽 )𝜋( 𝒙 ∣ 𝜽 )𝜋(𝜽)

𝜋̃𝐺( 𝒙 ∣ 𝜽, 𝒀 )
|

𝑥=𝑥∗(𝜽)

. 

𝜋̃𝐺( 𝐱 ∣∣ 𝜃, 𝐲 ) denotes the Gaussian approximation4 to 𝜋( 𝐱 ∣∣ 𝜃, 𝐲 ) by mathching the mode of the full conditional 

of 𝒙 for a given 𝜽.  

The second step aims to approximate 𝜋(𝑥𝑖 ∣ 𝜽, 𝒀). Rue et al. (2009) offered three possible approaches: a Gaussian 

approximation, a Laplace approximation and a simplified Laplace approximation. The simplified Laplace 

approximation, as the default option, compromises estimate accuracy and computational costs. 

Once the two terms in Eq.5 are approximated, we can integrate out 𝜃 by applying numerical integration. This can 

be done by an iterative algorithm with respect to suitable evaluation points 𝜃𝑚 and corresponding area weights 

𝛥𝑚. Putting all things together, we have 

𝜋̃(𝑥𝑖 ∣ 𝐲) ≈ ∑  

𝑀

𝑚=1

𝜋̃(𝑥𝑖 ∣ 𝜃𝑚, 𝐲)𝜋̃(𝜃𝑚 ∣ 𝐲)Δ𝑚, 

as the final approximation of the posterior marginal density of Eq.5. 

Despite the complexity of the INLA algorithm, the developers of INLA provide a feasible way for users to 

                                                      

 

4 Tierney and Kadane (1986) proved that this equation is equivalent to the Laplace approximation of the marginal posterior distribution. 
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implement INLA. INLA is a C program that is further packaged into a R library. The R-INLA supports a variety of 

standard and custom models and can process the results directly in R. 

 

A rethinking on Interpretation 

We now move on to the interpretation of latent spatial random effects (Z). To the best of our knowledge, only a few 

studies shed light on interpreting latent spatial random effects. Unlike the interpretation of spatial lag models, which 

has been well documented in the theoretical and empirical literature, the interpretation of SEMs was rarely seen. Le 

Gallo et al. (2005) paved the way for its interpretation and highlighted the spatial properties of shocks. Since both 

CAR models and SEMs pertain to hierarchical modeling, following the interpretation of SEMs should help explain 

the random effects in CAR models. However, due to the omission of the structural form for CAR models, we cannot 

directly borrow the interpretation from SEMs. This leads us to focus on the work of Andrews (2005) and Bai (2009). 

They demonstrated that the latent random field for observations was used for capturing the varying response to 

some common shocks. Notably, the latent field in these models is built on a covariance structure that has 

uncorrelated diagonal elements and homogeneous variance. That is to say, the latent field does not incorporate any 

spatial information. By contrast, in SEMs and CAR models, spatial information is contained in the covariance 

matrix of the random field. High covariance between neighbouring regions is expected, while covariance between 

non-neighbouring regions is expected to be zero. In this way, the interpretation of a spatial random field is based on 

the ideas that each observation should react differently to neighbourhood shocks, but observations that are close to 

each other should respond similarly to those shocks due to similar unobserved characteristics. 

More specifically, the latent spatial random effects are associated with random intercepts. Following this logic, we 

can posit that the individual-level random intercepts 𝜐𝑖 reveal some grouping patterns. Some random intercepts 

have similar positive values, others have similar negative values. When these values are plotted on a graph, we may 

observe several clusters having similar values. Clusters with similar positive values are recognized as “hot spots”, 
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as the random intercept positively contributes to the composite intercept5. In contrast, we can identify some “cold 

spots”. 

This phenomenon should reflect the existence of spatial autocorrelation defined as the coincidence of value 

similarity with locational similarity. For example, geographical areas tend to be surrounded by neighbours with very 

similar values. This phenomenon is also a reflection of spatial heterogeneity, since the estimate value of random 

intercepts is not constant across space, that is a cluster of high values being distinguished from a cluster of low 

values (Anselin, 2010). 

 

A simulation study 

In this section, we illustrate and compare the SEM and CAR model by conducting a simulation study based on 

artificial data. 

The artificial dataset is built on the freely available R package “spData”, which gives topographic information on 

Syracuse, New York State. We create two uncorrelated (Pearson’s r = 0.084 , p − value = 0.509 ) variables 

(𝑥1, 𝑥2), available on 63 lattices of Syracuse City. Further, the data for the dependent variable Y (Y = (𝑦1 … 𝑦𝑖)′ 

with 𝑖 being an indicator for lattices) are assumed to follow binomial distribution, and are generated as a function 

of the two covariates above. Onto this functional relationship, we add a spatially correlated disturbances referred to 

as error Ω. Ω is simulated based on the distance between data points on the surface of Syracuse City. 𝑑𝑖𝑗 denotes 

the Euclidean distance between the centroid of lattice 𝑖 and 𝑗. Then, the spatial covariance matrix these centroids 

is defined as 𝜎2 exp (−
𝑑𝑖𝑗

𝜌
). 𝜌 is the range that is set to 2500 meters. 𝜎2 is the variance that is set to 1. 

The data generating process is expressed as： 

Y ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝) 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 2 + 1 ∙ x1 + 0.5 ∙ x2 + Ω. 

 

                                                      

 

5 The composite intercept relies on an overall intercept 𝛽0 and individual intercepts 𝜐𝑖. 
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Table 1. The descriptive statistics for the artificial data. 

Statistic n Mean SD Min Pctl(25) Pctl(75) Max 

Y 63 55.9 8.27     28 53.5 62 63 

x1 63 0.055 0.894 -1.97 -0.485 0.635 2.17 

x2 63 -0.032  0.903 -2.31 -0.645 0.485 2.19 

 

Based on the artificial data set (See Table 1), we conduct a statistical analysis via SEMs and CAR models with the 

same spatial weight matrix. 

 

 SEM: logit(𝜋𝑖) = 𝑥1𝛽1 + 𝑥2𝛽2 + Γ𝑆𝐴𝑅  with Γ𝑆𝐴𝑅 ∼ 𝑆𝐴𝑅(𝜌𝑆𝐴𝑅 , 𝜏𝑆𝐴𝑅) 

 CAR: logit(𝜋𝑖) = 𝑥1𝛽1 + 𝑥2𝛽2 + Γ𝐶𝐴𝑅 with Γ𝐶𝐴𝑅 ∼ 𝑝𝐶𝐴𝑅(𝜌𝐶𝐴𝑅 , 𝜏𝐶𝐴𝑅) 

 

Regarding the spatial weight matrix, binary matrices based on the distance threshold are considered (see Figure 2). 

These matrices are then rescaled by its maximum eigenvalues (Haining, 2003). To avoid the inappropriate 

specification of spatial weight matrices, we consider three candidate matrices with different thresholds, which 

generate three scenarios. We adopt a logGamma(1,0.00005) prior to the precision parameters 𝜏 for both models. 

A uniform prior on the interval (−1,1) is then assigned to 𝜌. 𝛽 has an independent, zero mean normal prior 

distribution with the precision 1/3. Analyses are then carried out using the software package R-INLA. 
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Figure 2. Spatial distribution of variables and different spatial weight matrices. (A) Map of Syracuse with census 

tracts and the spatial visualization of the dependent variable. Nearest neighbouring relationships between census 

tracts for generating spatial weight matrices. (B) The threshold for the nearest neighbour is set to 1000 meters; (C) 

The threshold is 1250 meters; (D) The threshold is 1500 meters. 

 

The relative performance of the two models is assessed by a series of criteria6, 1) the Deviance Information Criterion 

(DIC) (Spiegelhalter et al., 2002), the Watanabe–Akaike (or “widely applicable”) information criterion (WAIC) 

(Watanabe, 2010) and the mean logarithmic score of CPO (LCPO) (Roos and Held, 2011) (A detailed explanation 

of these criteria is found in Appendix A.); these classical criteria help to select the model that fits the data well. 2) 

posterior distribution; since the true parameters are known, we can directly evaluate the quality of parameter 

estimates. The two types of assessment tools allowed us to identify the model configuration that successfully 

accounts for spatial autocorrelation in the data and is able to provide precise parameter estimates. 

                                                      

 

6 According to Bakka et al. (2018), the utilization of several criteria can give a more robust result in term of model fits. 
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Some interesting results emerged from our analysis. Figure 3 displays the model assessment result using the 

classical criteria. We observe that the CAR model produces lower values in terms of the DIC and WAIC, but the 

LCPO value for the both models are almost identical across the three scenarios. As such, both models perform well, 

but the performance of the CAR model is slightly better, irrespective of the matrix type. Furthermore, the assessment 

criteria indicate that the CAR model with W3 performs best in most scenarios. 

 

 

Figure 3. The comparison of SEMs and CAR models based on the classical criterion. 

 

Based on the assessment results using the second type of criterion, both models can identify the statistical 

significance of independent variables (see Figure 4). Regarding 𝑥1, the CAR model yields better estimates than the 

SEM, since its posterior mean estimate is close to the true value across the three scenarios. While, regarding 𝑥2, 

the CAR model and SEMs produce similar posterior estimates and credible intervals. Within each model, the 

credible interval is fairly consistent for each scenario (with the exception of the SEM with W1), but the posterior 

mean estimate varies a little. For the CAR model, the deviation between the posterior mean estimate and the true 

value of 𝑥1  in scenarios 1 and 2 is almost identical, but is slightly smaller than in scenario 3. For 𝑥2 , such a 

deviation is almost identical in scenario 1 and 2, but is slightly larger than in scenario 3. Our results suggest that the 

CAR model is more reliable in terms of parameter estimates, independence of the spatial weight matrix. 
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Figure 4. Parameter estimates, such as mean values (colored dots) and 95% credible intervals (vertical segments), 

from SEMs and CAR models with three different spatial weight matrices. The three scenarios are marked in green, 

yellow and cadet blue, respectively. Dotted lines indicate the true value. 

 

Figure 5 shows the posterior distribution of spatial autocorrelation parameters and variance in each scenario. The 

statistical significance of 𝜌 demonstrates that both models have potential to remove spatial autocorrelation in the 

data, and thus to provide precise parameter estimates. For the three scenarios, the mean estimate of the spatial 

parameter in the SEM is always inferior to that in the CAR model, but the two models have comparable posterior 

marginals of variance. According to Ver Hoef et al. (2018), we may anticipate the spatial autocorrelation parameter 

in the CAR model to be larger in absolute value than that in the SEM. The fact is that, using the same construction 

𝑊, the precision structure for CAR component includes the term 𝐼 − 𝜌𝑊, while that for SEMs includes the product 

term (𝐼 − 𝜌𝑊)(𝐼 − 𝜌𝑊)′, which implies higher order dependence. In other words, the SAR component in SEMs 

average over more neighbours to smooth out the impact of the spatial dependence. 
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Figure 5. Posterior estimates of spatial autocorrelation parameters (the right panel) and of variance (the left panel).  

 

We also notice that the INLA takes on average 7.6 and 4.4 seconds to fit the two models. This shows that SEMs 

require more computing power than CAR models. This finding also corresponds to Ver Hoef’s statement (2018) 

that converting from simultaneous autoregression to conditional autoregression models should offer computational 

benefits. 

The simulation study above is meant to illustrate the application of the SEM and CAR model to count data. As such, 

it remained a cartoon of the complexity and challenges posed by real data. In the following section, these two models 

are employed to investigate a real-world case. 

 

An empirical study of second home rates 

Background 

Our application builds on the abovementioned models for the incidence rate of Corsican (France) second homes in 

2017. Corsica is one of the 13 French administrative regions and locates in the Mediterranean Sea. Its white sand 

beaches in the south, towering cliffs in the east, and rocky highlands in the centre draw millions of tourists each 
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year. Corsica has seen a significant growth in the number of second homes, in parallel with the growing number of 

tourists. According to a local division of the INSEE (French National Institute of Statistics and Economic Studies), 

Corsica had 91,622 second houses in 2015, accounting for 37.2% of the region's housing stock. It is one of the 

French regions most affected by second houses. Residents are anxious about how their lives might change, since 

high second home rates and housing prices may raise the cost of living and lead to the loss of locally-derived revenue 

(Marcelin, 2018). This phenomenon has attracted the attention of local government agencies and economists.  

In addition to the Corsican case, second home phenomena in different regions and countries have been examined 

from various aspects for decades (Müller and Hoogendoorn, 2013). Several scholars have examined the impact of 

public policy or planning on second home occurrences (Norris and Winston, 2009). Paris (2009) argue that second 

home studies should concentrate on assessing the influence of second homes on local housing markets. As more 

and more social scientists intend to understand how space or location translates into socioeconomic phenomena, 

some scholars also focus on the spatial property of second homes. Back and Marjavaara (2017) found that there 

was a significant difference in the spatial distribution of second house stocks between urban and rural areas, as well 

as between tourist destinations and the hinterlands. They also showed the impact of second homes on housing 

markets depending on local contexts. Mowl et al. (2020) performed an empirical study indicating the heterogenous 

nature of second home stocks in rural mountainous areas (Alpujarra Granadina) in Spain. In a word, it is necessary 

to recognize the importance of locations on second home stocks. 

Our case study investigates the incidence rate of second homes in Corsica. We intend to demonstrate the role that 

both local characteristics and spillover play in determining the incidence rate. To achieve this, the two AR models 

based on local indicators are developed. 

 

Spatial Dependence 

Apart from the above-mentioned empirical studies, there is an intuitive motivation for considering spatial 

dependence in modeling the incidence rate. The dependence should arise due to unobserved neighbourhood shocks 

associated with scenery, availability of housing sale information and even the impact of zoning regulation 
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transmitted over space. 

To be more specific, these amenity-related characteristics are not always limited within a single spatial unit, but 

frequently spread across adjacent units, resulting in spatial dependence among these units. Furthermore, pioneer 

second homes develop in a specific area with desirable features for buyers and then the phenomenon spreads out to 

neighbouring counties over time as the information becomes public. However, housing supply is typically 

constrained by zoning policies and economic profitability. That is, housing supply responds more slowly to housing 

demand. Due to the lack of supply and a high price, buyers should be forced to relocate to surrounding counties 

with comparable qualities but lower housing prices. Of course, the incidence rate in the neighbouring counties 

increases. We also refer to this kind of spatial dependence as the “spatial error effect”7. 

 

Data and models description 

To model the second home incidence rate, we initially assume that 𝑌𝑖 ∼ Binomial (𝑛𝑖, 𝜋𝑖), where 𝑌𝑖 is the number 

of second homes8 in county 𝑖 (𝑖 = 1, ⋯ ,360) in 2017, 𝜋𝑖 is the second home rate and 𝑛𝑖 is the total number of 

housing stocks. 𝑛𝑖 also acts as an offset term in the regression, which allows the count of second homes in each 

county to be comparable. 

A set of control variables are considered in the models to capture the relevant amenities, social-economic factors 

and accessibility that are expected to influence the second home occurrence within each county. All covariates are 

found as important in the literature. 

                                                      

 

7 Another realization of spatial dependence is known as spatial spillover effects, which are generated only through observed factors of 

neighbourhoods, and are modelled by a spatial lag in the dependent variable. However, in our particular case, there is no convincing 

economic theoretical explanation for the presence of strong spatial spillover effects. Furthermore, factors directly affecting second homes in 

proximal counties are also hard to recognize by second home buyers. Even though some factors may show spatial dependence implicitly, it 

is still hard to measure, for example, the scenery. While, unobserved factors of neighbouring counties should affect second homes in a 

county just as observed factors do. For these reasons, spatial error effects are more suitable in our case, and we apply SEMs and CAR 

models. 

8 There are wide cross-county variations of second home counts, as shown by Figure B1 in Appendix B. 
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Several researchers have demonstrated that amenities are a key determinant of second home occurrence. Müller et 

al. (2004) believed second homes were often located in coastal areas, amenity-rich hinterlands, and areas with 

mountain landscapes. Barnett (2007) stated that an ideal second home location should include the following features: 

weather, infrastructure, views, history and nature. Kaltenborn et al. (2007) found that there has been a rapid 

expansion of second homes in sub-alpine areas in Norway, and they (2008) also indicated that some second homes 

were suited around mountain and coast tourism resorts, others were suited closely to historical areas. More recently, 

Back and Marjavaara (2017) indicated that more and more Norwegian second homes were located along coasts, 

around western mountain ranges and inland lakes. As such, we include the number of natural landscapes and of 

cultural landscapes. To facilitate interpretation, we use a logarithmic transformation on these variables. We also 

consider two dummy variables. They are the mountainous county and the coastal county. Positive signs are expected 

for these variables. 

The second home occurrence also depends heavily upon local social, economic circumstances and policies (Brida 

et al., 2009; Hall, 2015). Some local governments passed tax incentive schemes to promote second home 

development, others used financial tools such as the levying of differential council taxes, tax penalties for second 

home owners, to control the development (Gallent and Tewdwr-Jones, 2000; Norris and Shiels, 2007). Furthermore, 

Barke (2007) showed that the number of second homes in a Spanish province was associated with the provincial 

population size, and depopulation was an important factor in creating second homes. Hence, we include two 

covariates, the local population and the council tax. With respect to accessibility, we include the distance to the 

nearest “gates”, which involve all the ferry ports and airports that can connect Corsica to the French mainland. Table 

2 provides the descriptive statistics for these covariates. 

 

Table 2. Descriptive statistics for these explanatory variables. 

Types Statistic N Mean SD Min Pctl(25) Pctl(75) Max Expected signs 

Environmental 

factors 

log2
(Natural 

landscapes
) 360 0.719 1.832 0 0 1 19 + 

log2
(Cultural 

landscapes)
 360 0.747 2.422 0 0 1 28 + 
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Mountainous 

county (0/1) 

360 0.483  0   1 + 

Coastal county 

(0/1)  

360 0.269  0   1 + 

Social 

economic 

factors 

log2(Population) 360 7.692 2.105 3.459 6.200 9.034 16.109 − 

log2(Council tax) 360 -2.460 0.525 -4.849 -2.684 -2.125 -1.206 − 

Accessibility log2(dis_gates) 360 3.915 0.928 -0.160 3.429 4.587 5.411 − 

 

SEMs are widely used to deal with spatial error effects, and a CAR model is also considered here. As regards the 

spatial weight matrix in the model, a binary, relative graph neighbour structure is used (see Figure B2 in Appendix 

B). 

 

Model comparison results 

To begin with, we focus on model assessment, since it is helpful to identify a single best model. The classical criteria 

are employed again. 

 

Table 3. DIC, WAIC, LCPO Statistics for SEMs and CAR Models. 

 DIC WAIC LCPO 

SEM 2766.55 2691.62 5.424 

CAR 2762.51 2682.58 5.352 

 

According to the DIC values in Table 3, the SEM has the worse fit (DIC=2766.55) The DIC value of the CAR 

model is 2762.51, suggesting the better fit and parsimony. Something similar happens with WAIC and LCPO. As 

a result, all of the model selection criteria undoubtedly point to the CAR model. It will be used to produce one-step 
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ahead, to demonstrate the interpretation of fixed covariate effects and more important latent random effects in the 

next section. Before doing this, we attempt to compare the posterior estimates of parameters in the two models 

briefly. 

 

 

Figure 6. Posterior means (black dots) of fixed covariate effects with 95% credible intervals (vertical segments) 

based on the two model. 

 

Figure 6 depicts the posterior distribution of the covariates. Except for the cultural landscape, the council tax and 

the distance to the nearest “gates” on the island, the majority of covariates are statistically significant. As such, the 

change in the specification does not change the statistical significance of covariates. Most coefficients and credible 

intervals are consistent between the SEM and CAR model. For example, the range of credible intervals of the coastal 

county and the population are likely stable, but the posterior mean for these covariates shows a slightly increased 

pattern as the model moves from the SEM to the CAR model. By contrast, the posterior mean for the natural 

landscape decreases. 

The posterior estimates of hyperparameters are shown in Figure 7. The left panel reveals almost a complete overlap 

between the posterior marginals of variance for the CAR model and that for the SEM. The right panel indicates that 
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the CAR model yields higher posterior mean estimates (0.793) for the spatial autocorrelation parameter than the 

SEMs (0.451). As expected, these results correspond to the findings in the simulation study. 

 

 

Figure 7. Posterior distribution of spatial autocorrelation parameters (the right panel) and of variance (the left panel) 

 

Interpretation and discussion 

Given that the CAR model is preferred according to its accuracy, we intend to interpret its fixed covariate effects 

and spatial random effects. To be more specific, once the covariate effects are taken into account, it enables us to 

know how location contributes to the second home incidence rate. 

Table 4 displays the posterior mean for the fixed covariate effects and the corresponding 95% credible intervals. 

 

Table 4. Posterior means, standard deviations (SD) and a 95% credible interval for all covariates. 

 mean SD 0.025quant 0.975quant 

Intercept 1.211 0.357 0.506 1.910 

Natural 

landscapes 

0.091 0.025 0.041 0.141 

Cultural -0.013 0.018 -0.048 0.021 
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landscapes 

Mountainous 

county 

0.158 0.080 0.0001 0.315 

Coastal county  0.567 0.109 0.352 0.781 

log2 Population -0.255 0.024 -0.302 -0.209 

log2 Council tax -0.067 0.066 -0.198 0.063 

log2 dis_gates 0.076 0.059 -0.040 0.191 

𝜌𝐶𝐴𝑅 0.792 0.057 0.645 0.902 

 

For each covariate, the log odds of the second home incidence rate associated with a 1 unit or percentage increase. 

Only the number of cultural landscapes, the council tax and the distance to the nearest ‘gates’ are statistically 

insignificant. 

We find that the relative log odds of the second home rate (𝜋𝑖) increases 0.091 (95%𝐶𝐼, 0.041; 0.141) times with 

a 1-unit increase in the natural landscape count, given all else is equal. Our result conforms to many studies in the 

literature, where second home buyers prefer locations close to beautiful natural amenities and a peaceful living 

environment (Wong et al., 2017). Coastal and mountainous counties are positively associated with the second home 

incidence rate, and the posterior mean estimate for coastal counties (0.567 (95%𝐶𝐼, 0.352; 0.781)) is greater than 

that for mountainous counties (0.158 (95%𝐶𝐼, 0.0001; 0.315)). This indicates that second home buyers favour 

coastal areas. 

A negative association of the rate with population size (-0.255 (95%𝐶𝐼, −0.302; −0.209) ) is obtained. 

Consequently, counties with high numbers of inhabitants tend to have low second home rates. This finding is 

consistent with Barke's results (2007). Regarding the Corsican context, most inhabitants live and work in the main 

urban area of the Corsica, such as Ajaccio (ID. 83), Bastia (ID. 360), and Corte (ID. 195). Housing supply in these 

cities is always limited. Furthermore, these cities lack high-quality natural amenities to attract second home buyers, 

and overcrowding can be an issue here (Milano et al., 2019). Thus, the imbalance between demand and supply 

restricted the development of the second homes, and low second home rates are observed. 

The posterior distribution of spatial autocorrelation parameter 𝜌𝐶𝐴𝑅  (0.792, 95%𝐶𝐼, 0.645; 0.902)  reveals 
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significant spatial error effects and demonstrate positive spatial spillover in the error term. 

The posterior mean estimates for some spatial random effects are shown in Table 5. These effects demonstrate how 

the log odd of county’s incidence rate is influenced by neighbourhood shocks. 

 

Table 5. Posterior means, standard deviations and a 95% credible interval for spatial random intercepts. Only 

selected counties are shown. 

County ID INSEE Code County name Mean SD interval 

 68 2B150 Lumio 1.648 0.165 (1.325 ; 1.975) 

249 2A247 Porto-Vecchio 1.433 0.211 (1.019 ; 1.848) 

248 2A139 Lecci 1.300 0.114 (1.076 ; 1.524) 

 51 2A130 Grosseto-Prugna 1.199 0.122 (0.957 ; 1.437) 

 33 2A276 Serra-di-Ferro 1.186 0.133 (0.925 ; 1.447) 

 73 2B050 Calvi 1.139 0.193 (0.757 ; 1.517) 

279 2B010 Algajola 1.073 0.199 (0.685 ; 1.466) 

 28 2A065 Cargese 0.959 0.154 (0.657 ; 1.263) 

 23 2A070 Casaglione 0.914 0.125 (0.669 ; 1.16) 

193 2A141 Letia 0.879 0.149 (0.591 ; 1.174) 

207 2A348 Vico 0.874 0.116 (0.645 ; 1.102) 

250 2A362 Zonza 0.839 0.165 (0.515 ; 1.164) 

314 2B167 Montegrosso 0.717 0.141 (0.439 ; 0.992) 

247 2A092 Conca 0.680 0.120 (0.445 ; 0.916) 

 42 2A269 Sari-Solenzara 0.607 0.135 (0.343 ; 0.872) 

148 2B007 Albertacce 0.596 0.149 (0.306 ; 0.889) 

 78 2A228 Pietrosella 0.563 0.135 (0.299 ; 0.829) 

197 2A284 Sollacaro 0.559 0.133 (0.296 ; 0.82) 

175 2B023 Asco 0.553 0.161 (0.24 ; 0.873) 
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 30 2A090 Coggia 0.516 0.120 (0.279 ; 0.752) 

 32 2A189 Olmeto 0.352 0.137 (0.085 ; 0.622) 

 83 2A004 Ajaccio -0.626 0.246 (-1.11 ; -0.143) 

117 2B309 Santa-Maria-di-Lota -0.706 0.151 (-1.002 ; -0.411) 

 41 2A272 Sartène -0.710 0.253 (-1.207 ; -0.213) 

268 2A001 Afa -0.728 0.169 (-1.062 ; -0.4) 

119 2B305 San-Martino-di-Lota -0.730 0.146 (-1.018 ; -0.445) 

195 2B096 Corte -0.852 0.244 (-1.332 ; -0.374) 

355 2B353 Ville-di-Pietrabugno -1.253 0.168 (-1.587 ; -0.925) 

154 2A006 Alata -1.433 0.146 (-1.723 ; -1.148) 

360 2B033 Bastia -2.027 0.268 (-2.555 ; -1.502) 

299 2B120 Furiani -2.290 0.162 (-2.612 ; -1.975) 

218 2B037 Biguglia -2.455 0.166 (-2.785 ; -2.132) 

 

As previously indicated, SAR and CAR random effects can be interpreted as random intercepts. Significant “hot 

spots” in Corsica include Lumio (ID. 68), Porto-Vecchio (ID. 249), Lecci (ID. 248), Grosseto-Prugna (ID. 51), Calvi 

(ID. 73), Algajola (ID. 279), Cargese (ID. 28), Vico (ID.207), Montegrosso (ID. 314), Zonza (ID. 250), Conca (ID. 

247), etc. By contrast, Alata (ID. 154), Biguglia (ID 218), Furiani (ID 299), Ville-di-Pietrabugno (ID. 355), Bastia 

(ID. 360) and Corte (ID. 195) belong to “cold spots”. 

In Figure 8, we display the posterior mean estimates of the CAR-specified random field, which reveals some 

interesting spatial features. 
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Figure 8. Posterior estimates of latent spatial random effects in LCAR model with “hot spots” and “cold spots” 

 

Corsica has five significant clusters of "hot spots." Grosseto-Prugna (ID. 51, +1.199 ), Serra-di-Ferro (ID. 33, 

+1.186), Pietrosella (ID. 78, +0.563), Sollacaro (ID. 197, +0.559) and Olmeto (ID. 32, +0.352) form a cluster 

along Ajaccio's southern shore. A similar cluster of “hot spots” is identified in southeast Corsica with Porto-Vecchio 

(ID. 249, +1.433), Lecci (ID. 248, +1.300), Zonza (ID. 250, +0.839), Conca (ID. 247, +0.680), Sari-Solenzara 
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(ID. 42, +0.607). Vico (ID. 207, +0.874), Coggia (ID. 30, +0.516) and Casaglione (ID. 23, +0.914) are part 

of another cluster characterized by positive neighbourhood shocks around Cargese county (ID. 28, +0.959). The 

next cluster is located in the “Balagne” region, including Lumio (ID. 68, +1.648), Montegrosso (ID. 314, +0.717), 

Calvi (ID. 73, +1.139), Algajola (ID. 279, +1.073). Regarding the last cluster of “hot spots”, the county of Asco 

(ID. 175, +0.553), Letia (ID. 193, +0.879) and Albertacce (ID. 148, +0.596) are sited at the centre of Corsica. 

All these suggest that benefits arise from a county for its neighbours. A possible explanation is that the five clusters 

are all tourist attractions. Calvi, Porto-Vecchio, Cargese and their neighbours are traditional tourist attractions. Asco 

is an important road junction on the GR20. Grosseto-Prugna and its neighbours are famous for beaches, seashore 

ponds and medieval landmarks. As such, we can expect that some unobserved factors due to scenery/recreation in 

a county spread over neighbouring counties. 

On the other hand, we observe two clusters of "cold spots". One is in the Bastia area, another is in the Ajaccio area. 

For the Bastia area, negative shocks exist in counties such as Biguglia (ID. 218, −2.455 ), Furiani (ID. 299, 

−2.290 ), Bastia (ID. 360, −2.027 ), Ville-di-Pietrabugno (ID. 355, −1.253 ), Santa-Maria-di-Lota (ID. 117, 

−0.706), San-Martino-di-Lota (ID. 119, −0.730). The Ajaccio area involves Ajaccio (ID. 83, −0.626), Alata (ID. 

154, −1.433) and Afa (ID. 268, −0.728). The two clusters correspond to the two major urban areas in Corsica. 

Further, ferry ports, airports and highways together make the two clusters the main hinge of the island, rather than 

the attraction due to its scenery. In addition, supply rigidities in housing may also limit the interest of home buyers. 

 

Conclusion remarks 

In this article, we reviewed the two common spatial “AR” models, known as SEMs and CAR models, to model 

spatial effects among data with discrete support in a space. The first model is often regarded as spatial econometrics, 

while the latter one is widely used in spatial statistics. To our knowledge, some research established the 

mathematical relationships and investigated the marginal correlation properties between SEM and CAR models, 

but no study investigates them from the hierarchical modeling perspective. Furthermore, some advanced Bayesian 

techniques, such as INLA, are rarely found in the economic literature to fit these models. The interpretation of the 
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two models is rarely discussed either. 

Even though the two models are quite different according to econometricians, we argue that these two models can 

be unified through hierarchical models for several count data families (Poisson, binomial, negative binomial), while 

the fundamental difference between the two models is the covariance structure for specifying latent (Gaussian) 

random fields. Moreover, due to the separation of data models (i.e., likelihood) and process models (i.e., latent 

fields) in the hierarchical structure, we can avoid the complications arising in fitting SEMs using maximum 

likelihood methods. Lastly, since both models can be represented by a hierarchical model with Gaussian random 

effects, we can apply the INLA approach. 

A simulation study is then carried out to compare these models. We find that CAR models often have better 

performance. The posterior mean value and credible intervals are quite consistent across both models in each 

scenario. Furthermore, the CAR model yields the higher posterior mean value of spatial autocorrelation parameter, 

which corresponds to the statement of Ver Hoef et al. (2018). This simulation study also demonstrates that INLAs 

can return accurate estimates with limited computing resources. 

To provide an example for the two types of spatial autoregressive models, we used Corsican county-level data 

related to second homes, sceneries and social-economic indicators for the year of 2017. More importantly, our 

attention is paid to how the model estimates should be interpreted. In particular, how to interpret the latent random 

field. We therefore link the two types of models to latent factor model in econometrics and interpret the spatial latent 

field as neighbourhood shocks. Since the random field component is associated with random intercepts in a GLMM, 

we can determine the grouping pattern on the basis of posterior estimates of random intercepts. Subsequently, such 

group patterns can be plotted on the graph to identify several geographical “hot spots” with positive values and 

“cold spots” with negative values. We identify five “hot spots” and two “cold spots” in Corsica. We believe that 

these spots should be determined by some latent neighbourhood factor, such as the scenery. 

Due to the flexibility of the INLA approach, it can be used to fit spatial, spatio-temporal and panel data models. We 

hope that this study triggers other research on applying the INLA approach to fit spatial econometric models when 

investigating regional economic issues. 

There are several useful ways in which the current work can be extended. First, due to the availability of data, we 

include several social-economic indicators in the current study. Future work may address this limitation by 
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considering more social-economic covariates, such as poverty and unemployment rate at the county level. For 

practical use, it would be beneficial to have a suite of diagnostic metrics for evaluating the two types of models. 

Various metrics have been offered in the literature, and practitioners might benefit from a systematic effort to gather 

and implement them. Lastly, the binomial scenario can be extended to other count data families in order to examine 

regional foreign direct investment and international trade. 
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