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Abstract

Second home development is an important issue to a housing market and local
land use. Understanding second home dynamics at the small area scale will help pol-
icymakers to conduct effective interventions to meet the concern of local inhabitants.
Conventional approaches do not consider second homes varied across space and over
time. Hence, spatial models, such as the Besag, York and Mollie (BYM) model, are
useful in terms of offering a feasible way to model both covariates and spatial, temporal
dependence. This tool is then applied to analyse the second home ratio at a county
level in Corsica, France, over the period 2007-2016. We intend to investigate the impact
of spatially referenced covariates and the spatio-temporal dependencies of the second
home ratio in each Corsican county. Binomial regression models with spatial and tem-
poral random effects are implemented via Integrated Nested Laplace Approximations
pertaining to a Bayesian paradigm. Results show that the model with spatial, temporal
random components and a spatiotemporal interaction term produces the most realistic
estimates and the best forecast. Then, physical landscape counts, coastal counties, and
mountainous counties are positively associated with second home rates, while cultural
landscape counts, number of households and interest rates are negatively associated
with the second home rates. We also identify the “hot spot” and “cold spot” of the sec-
ond homes. While the temporally structured component reveals that there was merely
a gradual increase on the second home ratio over the past 10 years.
Keywords: Bayesian hierarchical modelling, Besag–York–Mollie model, Corsican sec-
ond home ratio, Integrated Nested Laplace Approximations, spatio-temporal dynamics
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1 Introduction

Academic discussions of second home phenomena have never ceased over the past decades

(Coppock, 1977; Müller, Hall, and Keen, 2004). Topics include regional development, rural

planning, tourism promotion and local governance (Farstad and Rye, 2013; Hall, 2015; Müller,

Hall, and Keen, 2004).

Corsican context is worthy of studying for several reasons. In 2014, The second home

ratio in Corsica equalled 35%, which was 26% higher than French national level. In some

villages, this proportion even reached 80% (Maupertuis, Tafani, and Poggioli, 2017). With

the growth of tourists, this ratio might go up. Further, local public agencies (CdC, 2019)

and economists (Giannoni, Beaumais, and Tafani, 2017; Caudill, Detotto, and Prunetti, 2019;

Ling, 2019) have identified the growth of second home properties as a crucial issue to urban

planning and rural development. The regional council even voted to build a so-called ”statut

de résident”, which restricted the right to acquire residences in Corsica.

Perhaps surprisingly, even though Corsica is a famous tourist destination in the Mediter-

ranean and most inhabitants think that second homes affect their lives, there appears to be

little work on discussing the second homes, especially, the spatial and temporal nature of

second home occurrence. Hence, all suggest that a detailed examination of Corsican second

home development and change patterns is timely.

Apart from the under-explored Corsican case, past research on second homes is domi-

nated by qualitative approaches or case study designs. Few papers employ basic quantitative

approaches, e.g., mapping volumes, identifying spatial clusters and applying classical linear

regression (Back and Marjavaara, 2017; Barke, 1991, 2007; Marjavaara and Müller, 2007).

However, these methods may lead to biased results and unrealistic inference due to the pres-

ence of spatial or temporal dependence in data.

Facing the above-mentioned research gaps, this paper makes two main contributions.

Firstly, we attempt to explain the second home dynamics using suitable Binomial regression

with the inclusion of latent spatial and temporal effects. More specifically, the main idea

of the proposed spatiotemporal models is that after preserving the fixed covariates effects,

the residual is decomposed into spatial shared components, temporal shared components

and a space-time component. These complex components account for the spatio-temporal

dependency on the second home ratio in each Corsican county, since observations tend to be

similar if they are geographically close (Tobler, 1970) or temporally adjacent. Additionally,

the specifications of the components are flexible, both a parametric and a nonparametric

structure for temporal shared components are considered. Moreover, through borrowing

strength from neighboring areas and adjacent periods, the proposed models produce reliable
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estimates. Another key point is that the models can be used within a Binomial response

setting. So, they overcome the limitation of a Gaussian response variable in classical spatial

econometric models, e.g., the spatial autoregressive model (SAR) and the spatial error model

(SEM) (Anselin, 1988). Consequently, we can directly apply the proposed models for count

data, such as the number of second homes, rather than implement data transformation to

meet the Gaussian response variable.

Incorporating many random effect parameters significantly increases model complexity,

and therefore estimation is carried out either by penalized quasi-likelihood (PQL) (Bres-

low and Clayton, 1993) or Markov Chain Monte Carlo (MCMC)1 (Gilks, Richardson, and

Spiegelhalter, 1995). Nevertheless, MCMC may outperform PQL due to absorbing prior

information, but it usually requires a lot of computational resources. Hence, we apply a

novel statistical tool called Integrated Nested Laplace Approximations (INLA) (Rue, Mar-

tino, and Chopin, 2009) pertaining to a Bayesian paradigm. As an alternative of MCMC,

INLA take advantages of numerical integrations and Laplace approximations, which could

significantly reduce computational time and return the reliable posterior probability distribu-

tions of model parameters. Hence, all models in our work are fitted by the R-INLA package

(Martins, Simpson, Lindgren, and Rue, 2013).

Briefly, this research investigates the spatiotemporal patterns of second homes at the

county level in Corsica, France. Moreover, we attempt to:

(i) illustrate a novel approach to modeling the second home ratio;

(ii) examine which factor affects second home occurrence in Corsica;

(iii) identify the overall temporal trend in second home occurrence in Corsica from 2007 to

2016.

The remainder of this paper is structured as follows. In Section 2, we provide an overview

of second home literature, especially the factors influenced second home occurrence in differ-

ent regions. In Section 3, we describe the Bayesian hierarchical Binomial model specification,

in particular, how to incorporate space, time and space-time random effects in the hierarchi-

cal Binomial models. Section 4 details our dataset, outlines empirical strategies and displays

the estimation results. We draw a conclusion in Section 5.

2 Theoretical aspects and empirical evidence

Second homes in different regions have been investigated from economic, social and envi-

ronmental perspectives. We find that there are two key factors affecting second homes, i.e.,

1 PQL belongs to a frequentist approach, while MCMC belongs to a Bayesian approach.
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amenities and socio-economic factors.

Many researchers (Coppock, 1977; Hall and Müller, 2004; Müller, 2006; Müller and

Hoogendoorn, 2013) hold the view that one of the key determinants for selecting second

home locations is high amenity value and extensive research analyses the impact of various

amenities in different regions.

Müller (2002) finds that in Northern Sweden, more and more second homes concentrate

around coastlines and uplands due to scenic qualities and recreation opportunities. Barnett

(2007) conducts a survey of the second home market in Central and Eastern Europe. He

concludes that ideal second home locations should satisfy the elements, such as weather,

infrastructure, views, history and nature. Norris and Winston (2009) analyze the Ireland

case and indicate that second home usually locate in the areas with amenity-rich landscapes

or proximity to sea, rivers, lakes and mountains. Kaltenborn, Andersen, Nellemann, Bjerke,

and Thrane (2008) show that Norwegian second homes increasingly occur closely around

mountain and coast tourism resorts. This phenomenon is related to Norwegian culture,

where nature plays an important role in human life and second homes provide a link between

human life and nature. Additionally, some second homes locate in areas with historical or

social meaning (Kaltenborn, Andersen, and Nellemann, 2007).

Regarding social-economic factors, Norris and Winston (2009) conclude that the growth

of second homes is likely related to local factors (Hall, 2015; Orueta, 2012).

Keane and Garvey (2006) find that the increasing growth of second homes in Courttown

and Drumshanbo is due to local tax incentive. According to Norris and Shiels (2007), some

local governments pass tax incentive schemes to promote second home development because

associated construction creates job opportunities and tourism provides income for the local

government.

In addition, Barke (2007) analyses the second home changes in Spain from 1981 to 2001.

He clearly shows that the number of second homes in a given province is related to the

provincial population size. A statistical analysis provides evidence that the second home

rate of a province with small population size is usually high, while the province with large

population size has a low second home rate. He concludes that depopulation is an important

factor to create second homes.

Finally, Dower (1977) holds the view that high cost of borrowing money could slacken

the pace of second home growth because of additional capital demand.

Although the aforementioned factors affect second home occurrence in different regions,

their impact on Corsican second homes is still unknown. In addition, many scholars are

likely to overlook the spatial distribution of second home data, which could result in a biased

estimation. The fact is that the relationship between a response variable and covariates
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seems to vary over space and even time. Further, there seems to be too restrictive to impose

a linear relation for some regressors. To address these issues, Bayesian small area estimation

methods (Rao, 2003) are integrated into second home analyses. More precisely, we gauge

spatial, temporal correlation in second home data by means of Bayesian hierarchical binomial

models.

3 Spatiotemporal modeling

This section is divided into two subsections. The first outline spatial data types, in particular,

areal data structures. The second describes Bayesian hierarchical Binomial models.

3.1 Spatial data

Following the classification from Cressie (1992), there are three types of spatial data: point-

referenced data, spatial point patterns and areal data. The first two types refer to individual-

level data, while the last one is based on aggerated-level data. Typically, areal data own

two core features. They are built on a given region which is decomposed into many non-

overlapped sub-regions. Each sub-region is known as an areal unit. In addition, data are

collected through aggregated counts within each areal unit. In our study, we center around

areal data, due to the fact that, on the one hand, we are interested in investigating second

home rates. On the other hand, the available dataset does not provide exact coordinates of

second home properties. Instead, the dataset provides information of second home counts

for small areas2 over years.

3.2 Bayesian Hierarchical Binomial Regression Models

To capture all information from areal data, the proposed models should handle both count

data and latent spatial processes. Further, in some cases, it is plausible to consider temporal

patterns in the sense that data are collected over years. Temporal correlation may appear

and is likely to be stronger for adjacent years than for several years apart.

Facing such issues, a family of Bayesian hierarchical models (BHM) (Banerjee, Carlin,

and Gelfand, 2014) is introduced. The advantage of a BHM over a classical linear model

is that hidden spatial or temporal processes can be involved into the BHM via conditional

distributions, resulting in an additional stage, known as a process model. Therefore, the true

state of a phenomenon is modeled. For example, spatial autocorrelation and heterogeneity in

the areal data are incorporated in this stage to avoid unrealistic independent and identically

2 e.g., administrative units.
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distributed assumptions. The hierarchical structure is usually specified as follows (Gelfand,

2012):

• Stage 1 – Data model: [data — processes, parameters]

• Stage 2 – Process model: [process — parameters]

• Stage 3 – Parameter model: [parameters]

The first stage describes the distribution of observed data, also known as likelihood. This

level conditions with a latent process and the parameters of the data model. The second

stage specifies the true latent process, given process parameters. For example, the latent

process is delineated by spatial and temporal random effects with precision parameters3 in

our application. At the third level of the hierarchy, we assign hyperpriors to all parameters

in the previous stages. Finally, together with the likelihood, process and prior distribution of

all parameters, we can estimate the posterior distribution of the model parameters via Bayes

theorem.

In particular, to model Binomial-distributed4, spatial data, a Binomial model is adapted

to Bayesian hierarchical modelling framework. The dependent variable Yit, also known as the

number of successes, is assumed to follow a Binomial distribution, given nit trials (Ferrari

and Comelli, 2016).

Yit ∼ Binomial (nit, πit) (1)

where the sub-index i = {1, . . . , N} denotes a set of spatial units and t = {1, . . . , T}
denotes consecutive periods. πit is the probability of the successes in area i at time t. Further,

via a logit link function, the π is linked to a series of structured additive predictors.

logit (πij) = X>itβ + ωit (2)

where Xit are fixed covariate effects and β′ = (β1, . . . , βp) is the vector of corresponding

parameters. Latent processes are modelled via the random effect component ωit. Consider the

case of latent spatiotemporal processes, ωit may include one or more sets of spatiotemporally

autocorrelated random effects5, such as ωi
′ = (ω1, . . . , ωN), ωt

′ = (ω1, . . . , ωT ) and ωit
′ =

(ω11, . . . , ωNT ).

3 A precision parameter is the reciprocal of a variance parameter.
4 e.g., count data.
5 Different spatiotemporal random effects represent different spatiotemporal structures.
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Note that there are various applications using spatiotemporal Bayesian hierarchical Bi-

nomial models, including modelling disease risks (MacNab, 2003; Staubach, Schmid, Knorr-

Held, and Ziller, 2002), violent crimes (Zhu, Gorman, and Horel, 2006), public health inter-

vention (Viola, Arno, Maroko, Schechter, Sohler, Rundle, Neckerman, and Maantay, 2013),

presidential elections (Linzer, 2013) and public confidence on police (Williams, Haworth,

Blangiardo, and Cheng, 2019).

3.3 Modelling spatial dependence

Regarding the spatial random effect, ωi
′, we specify its prior distribution by an intrinsic

conditional autoregressive model (ICAR) (Besag, York, and Mollié, 1991), which is a special

case of conditional autoregressive model (CAR).

Given a set of areal units at sites i ∈ {1, 2, . . . , n}, the spatial interaction between a pair

of unit i and unit j can be modelled through a conditional univariate Gaussian distribution.

More specifically, this is done by assuming that the conditional distribution depends only on

the sites that are neighbors of site i. Formally, the full conditional distribution is:

υi|υj ∼ N

(∑
j∈∂i wijυj

wi+
,
σ2

wi+

)
6 (3)

where W is an adjacency matrix describing a neighborhood graph. Its diagonal elements

are all zero, wii = 0 and the off-diagonal entities, wij, show the proximity of regions ni and nj.

wi+ is the row sum of the ith row, wi+ = Σiwij and ∂i denotes the index of neighbors of i. The

core features of an ICAR model include (i) the mean of the conditional distribution equals the

average of its neighbouring values; (ii) the variance is given by the global variance divided by

the number of its neighbors. Therefore, as the number of the neighbours (Ni) increases, the

variance of the conditional distribution ( σ
2

Ni
) will decrease. In small area estimation literature

(Rao, 2003), this setting implies that an area “borrows strength” from its neighboring areas

(see A.1 for more details).

In the last decade, many spatial models for areal data have been proposed. Most of

them are extensions of CAR models, with examples including the popular Besag-York-Mollié

(BYM) model. BYM model can be considered as an ICAR component (υ) coupled with an

6 Under first-order contiguity, the full conditional distribution can be simplified as:

υi|υj,j∈∂i ∼ N

 1

Ni

∑
j∈∂i

υj ,
σ2

Ni


where j is a neighbor of i, Ni is the sum of neighbors of the unit i, Ni = wi+.
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exchangeable random effect (IID) component7 (ν). An advantage of BYM over ICAR is that

BYM could address the issue of heterogeneity (Harris, 2019).

3.4 Modelling temporal dependence and spatio-temporal variabil-

ity

As was mentioned in the previous section, it is necessary to take temporal correlation into

account if data are collected over years, since an ICAR or BYM model captures spatial infor-

mation only. Hence, on the basis of the ordinary BYM, several spatio-temporal specifications

are proposed, involving spatial, temporal components and even space-time interaction terms.

For temporal components, parametric and non-parametric smoothing functions of time are

considered. Further, a space-time interaction term gauges the specific temporal trend for

each unit (López-Quılez and Munoz, 2009).

The two prominent specifications for the temporal and spatiotemporal components are

the linear trend model proposed by Bernardinelli, Clayton, Pascutto, Montomoli, Ghislandi,

and Songini (1995) and the dynamic trend model proposed by Knorr-Held and Besag (1998).

Regarding the linear trend model, the linear parametric formulation of time is written as:

(ξ + ϕi) t
8 (4)

where ξ× t is a global linear function of time representing a mean trend in time and ϕi× t
an area-specific linear function gauging an area-specific trend to depart from the mean trend.

We specify a Gaussian exchangeable prior to ϕi.

ϕi ∼ Normal
(
0, σ2

ϕ

)
(5)

Seen differently, this model is a variant of a random slope model with a spatially varying

slope (ξ + ϕi). In a word, this model is simple, straightforward, but the linear assumption

seems to be restrictive.

To relax the linear restriction, it is possible to model time by a dynamic nonparametric

formulation (Knorr-Held and Besag, 1998):

ζt + γt + δit (6)

7 In BYM literature, the ICAR component is also known as a spatially structured random effect and the
IID component is known as a spatially unstructured random effect.

8 Note that t is normalized.

8



where there is a structured random effect ζt, an unstructured random effect γt and a

space-time interaction term δit.

ζt is usually modelled by a first order of random walk:

ζt|ζt−1 ∼ Normal
(
ζt−1, σ

2
ζ

)
(7)

where ζt gauges temporal dependence in the sense that the parameter for each time period

depends on the previous one.

γt denotes the temporally unstructured random effects. A Gaussian exchangeable prior

with 0 and σ2
γ is assigned to this parameter.

γt ∼ Normal
(
0, σ2

γ

)
(8)

For the space-time interaction component δit, a Type I unstructured interaction is used

(Knorr-Held, 2000). The Type I interaction is the cross product of spatially and temporally

unstructured terms9, which can be considered as a random intercept based on all observations.

Seen differently, this component represents global space-time heterogeneity and measures the

deviation from the spatial and temporal main effects. Again, a Gaussian exchangeable prior

with 0 and σ2
δ is specified.

δit ∼ Normal
(
0, σ2

δ

)
(9)

The aforementioned spatial and spatiotemporal models pertain to a class of structured

additive regression (STAR) models (Brezger, Kneib, and Lang, 2005; Klein, Kneib, Lang,

and Sohn, 2015). On the one hand, a STAR model has a link function and structured

additive predictors. The latter uses different smooth functions to gauge various types of

effects, including nonlinear effects, spatially and temporally correlated effects. On the other

hand, STAR formulates within a hierarchical Bayesian framework, so that different random

effects describe different processes10.

A common way to fit a STAR model is applying MCMC simulation. However, MCMC

may experience long computational time. In particular, the spatial and spatiotemporal mod-

els usually require more computational resources11, but these models can formulate into latent

Gaussian Markov Random Field (GMRF) models (Rue and Held, 2005; Schrödle and Held,

2011). Therefore, we can apply INLA, which are designed for the latent GMRF model and

return fast and accuracy Bayesian inference.

9 νi and γt interact.
10 e.g., random walk, first order autoregressive, intrinsic conditional autoregressive.
11 e.g., time and memory.
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4 Empirical analysis

4.1 Study region

As explained in the Introduction, we attempt to investigate the dynamics and impact factors

of second home rates in Corsica, France. Corsica is one of the 18 French administrative

regions located in the Mediterranean Sea. Additionally, Corsica is divided into 360 counties.

As “the pearl of Mediterranean”, Corsica is famous for its rich tourism resources (Vogiatzakis,

Pungetti, and Mannion, 2008). A single mountain range crosses the center of the island with

mountainous and alpine landscapes. While, beautiful beaches and seaward cliff predominate

coastal areas. For instance, Calvi and Porto Vecchio, located in the northwest and southeast,

are famous for their sandy beaches; Corte with many historical sites is suited in the center

of Corsica; Ajaccio and Bastia are the main cities in the island.

4.2 Data

In the study, data are collected over 360 counties from 2007 to 2016, representing 10 periods.

As such, this setting results in a total of 3600 space-time units without any missing values.

Data for each year concerning the number of the second home and the number of the

house in each county are obtained from INSEE12 through the French population census from

2007 to 2016. It also provides population information in each county. Interest rate data are

acquired from the “Banque de France”13 via the item “Narrowly defined interest rate median

for real-estate loans for individuals”. Since the time measure of data is the quarter, we then

convert the quarterly interest rate to the annual interest rate. Council tax data are obtained

from the “Ministère de l’action et des comptes publics”. Unemployment rates at the “zone

d’emploi” level are also collected from INSEE. Lastly, the research center “UMR CNRS 6240

LISA” provides data for the rest of variables14.

Descriptive statistics for the second homes and houses till 2016 are displayed in Table 1.

In the final year, there are 91,622 second homes distributed over 360 counties, meaning that

the second homes occupy 37.2% of the total houses at the end of the study period.

Fig 1 gives the annual second home rates15 among Corsican 360 counties.

Temporally, a gradual but steady augmentation of second home proportion is observed.

More precisely, regarding the median of second home proportion, it keeps stable during

the first two years. Then, the proportion slightly increases in the subsequent five years.

12 INSEE stands for “The National Institute of Statistics and Economic Studies”.
13 French central bank.
14 Table 7 in the appendix A.2 illustrates the variables and corresponding data sources.
15The raw counts of the second homes can be found in Table 8.
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Table 1: Descriptive statistics for second homes and total houses by county (period: 2007 -
2016)

Study region Dissemination Area

Current Total Count Mean Min Max SD*

Second home counts 91,622 222.88 1 6,748 461.52
Total house counts 245,851 619.34 15 33,895 2,132.65
Ratio 0.372 0.51 0.022 0.83 0.16

* SD stands for Standard Deviation.

Figure 1: Boxplot of the temporal trend in the raw rate of second homes as a proportion of
the total number of houses.

The proportion of the latter three years keeps stable again. The interquartile range of the

proportion shows the same step-change to the median proportion and always falls into [0.4,

0.6].

Fig 2 displays the distribution of the ratio of the second home counts over the total house

counts in Corsican 360 counties during 2007-2016.

There seems to be an annual change of the spatial variation in some areas. For instance,

several counties16 suited in the Corsica northern tip have a low second home rate in 2007,

whereas the rate upturns in 2008 and keeps stable in the subsequent years. The second

home rate in Bonifacio17 is relatively lower until 2010 and then it goes up. This phenomenon

suggests that once the second home rate in an area goes up, it may never drop off.

We also observe that counties with high second home rate cluster within the north tip

area, Saint-Florent area, Balagne area. On the contrary, low rate zones involve the northern

16 e.g., Rogliano, Luri county.
17 A county locates in the south corner of the island.
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Figure 2: Geographic distribution of second home ratio from 2007 to 2016.

east coastal area18, the Corsica center and the Ajaccio area. These high and low rate zones

likely persist during the whole study period. In contrast, other high and low rate zones

disperse throughout the whole island.

Instead of ocular judgements, we employ Moran’s I tests19 (Moran, 1950) to further

investigate the spatial dependence structure in the data. The results in Table 2 provide

evidence that there is positive spatial dependence in the second home ratios with an average

of 0.334 (P-value < 0.05) over the 10 years. Hence, when we model the Corsican second

home ratio, spatial dependence should not be neglected.

Following the review of the second home literature and considering the data availabil-

ity, two types of explanatory variables are considered, such as amenity variables and socio-

economic variables. Descriptive statistics for these variables are shown in Table 3.

18 Bastia and its neighbour counties.
19 We calculate Moran’s I statistics separately for each year. In this case, the adjacent matrix is defined

by queen contiguity weights shown in Fig. 6.
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Table 2: Annual Moran’s I statistics on second home rates

Year Moran’s I P-value

2007 0.304 <0.05
2008 0.325 <0.05
2009 0.337 <0.05
2010 0.334 <0.05
2011 0.335 <0.05
2012 0.322 <0.05
2013 0.324 <0.05
2014 0.343 <0.05
2015 0.359 <0.05
2016 0.362 <0.05

Table 3: Descriptive statistics of independent variables

Statistic Mean SD Min Pctl(25) Pctl(75) Max

physical landscapes 0.719 1.830 0 0 1 19
cultural landscapes 0.747 2.419 0 0 1 28

log2(household)* 6.567 1.972 1.585 5.129 7.728 14.822
household growth 0.005 0.037 -0.24 -0.012 0.025 0.22

log2(interest rate)* -4.778 0.307 -5.479 -4.968 -4.556 -4.353

log2(council tax)* -2.801 0.650 -5.703 -3.249 -2.307 -0.712

log2(unemployment rate)* -3.412 0.240 -4.053 -3.556 -3.231 -2.905

* To facilitate interpretation, a base 2 logarithm transformation is applied to the variables.
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Table 4: Candidate Models for the second stage

Model Type Equation

0 Classical Binomial without any latent structures logit(πit) = xitβ +
∑p

j=1 f (xjt) (11)

1 Purely spatial logit(πit) = xitβ +
∑p

j=1 f (xjt) + υi + νi(12)

2 Spatial and temporal jointly logit(πit) = xitβ +
∑p

j=1 f (xjt) + υi + νi + ξt(13)

3 Spatial and temporal jointly logit(πit) = xitβ +
∑p

j=1 f (xjt) + υi + νi + ζt + γt(14)

4 Spatiotemporal with interactions logit(πit) = xitβ +
∑p

j=1 f (xjt) + υi + νi + (ξ + ϕi) t(15)

5 Spatiotemporal with interactions logit(πit) = xitβ +
∑p

j=1 f (xjt) + υi + νi + ζt + γt + δit(16)

4.3 Candidate models

To model the second home data, the BYM model and its spatiotemporal extensions are

considered. In this study, we specify five latent processes with increasingly complex repre-

sentation of space and time. As discussed above, Bayesian spatial and spatiotemporal models

can be written as a three-level hierarchical model.

At the first level, we assume that the observed counts for second homes (yij) are Binomial-

distributed20, where the rate of second homes (πit) is a proportion of the total number of

houses (nit). i = {1, . . . , 360} denotes the county and t = {1, . . . , 10} is the temporal unit,

year.

At the first stage, a binomial likelihood for second home counts is specified.

Yit ∼ Binomial (nit, πit) (10)

At the second stage, a logit transformation is applied to πij, representing the estimated

rate of second homes, and then the transformed πit equals the sum of all linear, non-linear

predictors and different random effect components.

The candidate specifications for the second stage include the models described in table

4. In equations (13) to (16), υi denotes the spatially structured random effects capturing

spatial dependence, νi represents the spatially unstructured random effects capturing spatial

heterogeneity, as explained in Subsection 3.3.

Thus far, we have known the candidate specifications for the latently spatial, temporal

process. At the third stage, we assign hyperprior distributions to all parameters appeared

20 In our case, the annual housing survey is considered a Bernouilli trial where a second home is treated a
success. The fact is that housing transactions are not frequent in Corsica. In particular, a second home could
hardly sell more than once in a year, meaning that second home sales probably constitute a Bernouilli trials.
Hence, we prefer a Binomial model to a Poisson model. Moreover, the second home ratio is relatively high,
which also provides evidence that a Poisson model may be not adequate. Typically, the fit of the Binomial
model could be close to the fit of the Poisson model with a small number of successes but a large number of
trials.
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in the previous stages. In this study, we assign a Gamma(1, 0.00005) distribution to to all

precision parameters21. The list of all precision parameters is shown as follows.

1

σ2
xjt

,
1

σ2
υ

,
1

σ2
ν

,
1

σ2
ζ

,
1

σ2
γ

,
1

σ2
δ

(17)

4.4 Modeling strategy

In the last section, we introduce the candidate models, starting from the classical Binomial

model and ending with the Binomial model with spatial, temporal and type I spatiotemporal

interaction components. Model 0, referred to as a benchmark, is a classical Binomial model

without any spatial effects. However, we detect the spatial autocorrelation in the data, it is

natural to consider a model in the CAR family and then to involve temporal components for

capturing possible temporal trends.

Different spatial or temporal components will result in different smoothing in the posterior

estimates. Regarding Model 1, estimated values are likely to vary across neighbors but not

over the test period. For Model 2, a single value is estimated for each neighbor and time

period, but the parametric formulation seems restrictive. The linear assumption is relaxed

in Model 3 and the model can gauge temporal autocorrelation in the data. Comparing with

Model 2, Model 4 incorporates a spatiotemporal interaction term, which allows for a specific

temporal trend for each observation while retaining the main, linear temporal trend. As

such, Model 4 should perform better than Model 2. Concerning Model 5, the inclusion of the

spatiotemporal interaction component should additionally improve the goodness of fit. The

empirical data will be more accurately represented.

4.5 Model implementation and assessment

All models are carried out by using R 3.5.3 (R Core Team, 2013) and R-INLA 19.04.16.

The Deviance Information Criterion (DIC), the mean logarithmic conditional predictive

ordinate (LCPO) and the holdout method in cross-validation are used for assessing model

fit and prediction capability. DIC is a widely-used criterion to evaluate goodness of fit in

Bayesian hierarchical models (Spiegelhalter, Best, Carlin, and Van Der Linde, 2002). DIC is

based on the posterior distribution of the deviance statistic. Model fit is computed by the

posterior expectation of the deviance D = Eθ|yit(D)22, while model complexity is summarized

by the effective number of parameters pD = D−D(θ). Combining the two parts and we then

obtain DIC:

21 In the INLA approach, we have log(precision) ∼ log−Gamma(1, 0.00005).
22 y represents observed data and θ is a parameter vector.
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DIC = D + pD = 2D −D(θ) (18)

For DIC, smaller values correspond to better-fitting models.

Alternatively, CPO (Geisser, 1993) is used as a predictive measure of a model. CPO

pertains to leave-one-out cross-validation and is defined as

CPOit = π
(
yit,obs|y−(it),obs

)
(19)

where π
(
yit,obs|y−(it),obs

)
is the cross-validated predictive density at the omitted observa-

tion it given all the other data. Following the suggestion from Roos and Held (2011), we

calculate the mean logarithmic CPO (LCPO)23 as follows:

LCPO = − 1

N × T

T∑
t=1

N∑
i=1

log (CPOit) (20)

Here, lower LCPO scores also indicate better models.

Predictive performance is also tested by holding out the data for the most recent most

year24. We then computed predicted values for the holdout units through the models trained

by a training dataset. The root mean square error (RMSE) is considered to measure the

closeness between the predicted second home ratio π̂it and the observed second home ratio

πit, and defined by

RMSE =

√√√√ 1

N × T

T∑
t=1

N∑
i=1

(
y (si, t)− ̂y (si, t)

)2
(21)

Again, lower RMSE values represent better predictive power.

4.6 Results

DIC, LCPO and RMSE values are displayed in Table 5.

DIC scores indicate that the classical Binomial model is poorly fitted. Comparing Model

0 with Model 1, the fit is much improved (∆DIC = −174133.40). The marked decrease of DIC

also provides evidence that the ill-fitting Model 0 is a result of omitting unobserved spatial

patterns. In addition, adding a linear, parametric temporal component (Model 2) improves

the model fit (∆DIC = −12.58) slightly. The fit is further improved (∆DIC = −20.77) in

23 LCPO is also known as the cross-validated logarithmic score.
24 We chose to test the model on the data of the most recent year rather than a random holdout dataset in

order to simulate practical application of the model, predicting future distribution of the second home ratio
in a year for which the model is naive.
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Table 5: Model assessment via DIC, LCPO and RMSE

DIC LCPO RMSE

Model 0 199,824.40 97,781.77 0.10852
Model 1 25,691.02 13,255.66 0.04115
Model 2 25,678.44 13,251.93 0.04113
Model 3 25,657.67 13,234.20 0.04093
Model 4 25,345.78 13,068.86 0.03670
Model 5 25,257.19 12,978.69 0.03439

Model 3 with the relaxation of the linear restriction in Model 2, using instead a dynamic

nonparametric temporal component. Comparing Model 2 with Model 4, the DIC scores

are largely reduced (∆DIC = −332.66) because of the inclusion of a space-time interaction

term. After incorporating the Type-I space-time interaction term, the DIC scores are further

reduced in Model 5. Hence, Model 5 has the best fit overall.

Regarding model predictive performance, the LCPO and RMSE values show in the same

sequence as the DIC score, meaning that LCPO and the holdout method favour Model 5 as

well.

For these reasons, Model 5 is the best model to perform both estimation and prediction

among all candidate models. Subsequently, this model will be used to making an inference.

4.7 Discussion

One aim of this study is to estimate the fixed effect coefficients. In addition to the fixed

effects, the spatial, temporal and spatiotemporal random effects are also investigated to

provide possible explanations for the space-time pattern of the second home ratio.

For each covariate, the upper part of Table 6 presents the log odds of the probability being

second homes versus the probability being other types of houses associated with a 1-unit or

percentage increase and its associated 95% credible interval (CI).

In general, most covariates are significant except for the household growth, council tax

and unemployment rate.

It can be seen that the relative log odds of the probability being second homes increases

0.094 (95%CI, 0.042; 0.147) times with a 1-unit increase in physical landscape counts, given

all else is equal. In contrast, a unit increase in the cultural landscape count decreases

0.051 (95%CI,−0.090;−0.0012) times in the log odds of the probability being second homes.

Hence, both landscape variables are informative. We may infer that the physical landscape

count significantly increases the log odds, while the cultural landscape count negatively con-
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Table 6: Posterior estimates of the covariates in Model 5

Mean St.Dev 0.025 quant 0.975 quant

Intercept -1.786* 0.263 -2.314 -1.280
physical landscapes 0.094* 0.027 0.042 0.147
cultural landscapes -0.051* 0.020 -0.090 -0.012

coastal county 0.759* 0.109 0.545 0.974
mountainous county 0.172* 0.079 0.016 0.327

σ2
log2(household)

0.267* 0.046 0.188 0.367

household growth -0.140 0.101 -0.338 0.059
log2(interest rate) -0.124* 0.025 -0.175 -0.077
log2(council tax) -0.019 0.044 -0.106 0.067

log2(unemployment rate) -0.050 0.044 -0.136 0.036

σ2
υ 0.134623 0.055502 0.053763 0.268292
σ2
ν 0.261115 0.035488 0.200101 0.339167
σ2
ζ 0.00031 0.00024 0.00004 0.00091

σ2
γ 0.00019 0.00033 0.00001 0.00092

σ2
δ 0.00738 0.00055 0.00635 0.00851

* Indicates the significance of independent variables.

tributes to the log odds. It indicates that second home buyers likely prefer natural scenery

to artificial elements. A possible explanation for this finding is that since cultural landscapes

usually locate in a town with good accessibility, it may bring overcrowding issues (Good-

win, 2017; Milano, Cheer, and Novelli, 2018). Second home buyers often look for an area

with beautiful scenery, silence and low population density, so they probably consider the

overcrowding as a dis-amenity.

The posterior mean coefficient 0.172 (95%CI, 0.016; 0.327) indicates that the odds of the

probability being second homes versus other house types increases by exp(0.172) ≈ 1.188

times as a mountainous county changes to a flat county, given all else equal. In addition,

there would be a 2.13625 times increase in the odds of the probability being second homes

as a coastal county changes to an inland county. One possible implication of this is that

Corsican second home buyers prefer living near coasts to living in mountainous areas.

After analysing plots of each covariate against the model residuals26, a non-linear trend

for the logged households27 is detected. Hence, the default first-order random walk (RW1)

25 The coefficient of coastal counties has a posterior mean of 0.759 (95%CI, 0.545; 0.974)
26 LOESS smoothing is applied to fit the points in each plot.
27 The household variable may experience an endogenity issue due to reverse causality. Since it lacks

appropriate instruments in the context and the instrumental variable method within the Bayesian framework
is still under investigated, we test strict exogenity of the household variable via the Wooldridge’s approach
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smoother in R-INLA is applied to the logged households. Figure 3 displays the non-linear

relation between the base 2 logarithm of households and the probability being second homes,

showing on the log odds scale. We initially observe a downward trend. The log odds of

the probability being second homes are at their highest in areas with the lowest value of

logged households and decrease as the value of logged households increases. The decrease is

non-linear, with a descent reaches around −0.5, followed by a leap of the slope. The leap

occurs when the logged households reaches the interval (11, 13). A possible explanation for

the leap is that these mid-size counties28 locate close to the main cities or are the capital of

cantons, and some of them are not far from national parks. In a words, these counties are

easy to reach and people can find different services and also public facilities. Then, the slope

decreases again, but the width of the 95% CI is relatively large because of limit observations.

Figure 3: Log odds relations between log2(household) and the probability being second
homes. The black line indicates the posterior mean log odds, while green represents the
corresponding 95% CI.

The coefficient on the base 2 logarithm of interest rates has a posterior mean of −0.124

(95%CI,−0.175;−0.077), meaning that a doubling of interest rates translates to a 11.66%

decrement for the odds, given all else equal. The coefficient reported here appears to support

the assumption that a low interest rate will encourage house buyers to enter the market.

There is a likely explanation for this result, house buyers are more likely to take out a home

loan and low interest rate means that obtaining home finance is more affordable (Paris, 2009).

The following part moves on to describe the posterior estimates of spatial and temporal

(see Wooldridge, 2010, pg.285; pg.490). The lead household variable is included in the model additionally.
We initially run the Model 5 including the logged households as a linear predictor. Then, the lead-1 or lead-3
households is included in the Model 5 additionally. The posterior estimates for the two additional variables
are 3.369×10−5 (95%CI,−1.587×10−6; 6.936×10−5) and 5.114×10−8 (95%CI,−3.517×10−5; 3.547×10−5).
Such result shows that there is not any endogenity issue (See Table 10 for more details).

28 The mid-size counties refer to counties with around 2,000 to 8,000 households.
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random effects.

Residual components provide a description of baseline log odds of being second homes in

each county. More specifically, Fig 4 reveals the contribution of the spatially structured and

unstructured residuals to log odds in each county after controlling all fixed covariate effects

and temporal variation.

Figure 4: Posterior mean estimates of spatial random effects for Model 5. Left panel: spatially
structured random effects. Right panel: spatially structured random effects.

To distinguish the positive and negative contribution, we define “hot spots” and “cold

spots”. The “hot spot” means the area for which there is evidence that its location positively

contributes to the log odds most, given all covariates. More precisely, regarding the spatially

structured residual, five main “hot spots” are Lecci, Algajola, Lumio, Zonza and Conca

county. These counties pertain to the two spatial clusters, Balagne area and Southeastern

area. Policymakers should be aware of these danger clusters, which show higher than aver-

age level of second homes. Introducing tightening measures by local governments to prevent

the growth of second homes in these counties is urgent. For example, the local government

may apply a so-called “taxe d’habitation sur les logements vacants” according to French

law. In contrast, Bastia, Furiani, Biguglia, Ville-Di-Pietrabugno and San-Martino-Di-Lota

are marked as “cold spots”. All these counties are merely located in the Bastia area. That is

20



to say, the Bastia housing market is less affected by the presence of second homes comparing

with the Balagne and Southeastern housing markets. Concerning the spatially unstructured

residual, the “hot spots” include Linguizzetta, Grosseto-Prugna, Saint-Florent, Oletta and

Aullene, while Furiani, Biguglia, San-Gavino-Di-Tenda, Ambiegna and Alzi are “cold spot”

counties. Spatially, the “hot spot” and “cold spot” counties derived from spatially unstruc-

tured residual are quite dispersed. For the counties within the “hot spot” derived from the

spatially unstructured residual, we suggest that the local government introduce tightening

measures as well.

Fig 5 shows the empirical temporal trend for the log odds of the probability being second

homes. Notably, the scale of the vertical axis of the red line range from −0.025 to 0.025

approximately, which suggests a slightly positive temporal trend over the past 10 years.

Hence, we believe that nowadays, the high second home rate is not due to the second home

increment during 2007-2016. Moreover, we do not observe sharp fluctuations in the graph,

which also provides evidence that there is not any booming in Corsica during 2007-2016.

Figure 5: Posterior structured temporal trend for second home ratio in Corsica. The red line
indicates the posterior mean trend and grey represents the corresponding 95% CI.

Investigating the type-I space-time interaction term provides further insight into the spa-

tiotemporal pattern of the second home ratio, as shown in Fig 8 in the A.3. Instead of

interpreting the spatiotemporal pattern directly, we calculate the proportion of marginal

variance explained by each component, given by

pi = σ−1i /
(
σ2
υ + σ2

ν + σ2
ζ + σ2

γ + σ2
δ

)
× 100%, i = {υ, ν, ζ, γ, δ}

The corresponding proportions are 33.35%, 64.68%, 0.081%, 0.06%, 1.83%. These results
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suggest that a huge part of the variability is explained by the spatial structures. More

precisely, the spatially unstructured component contributes to the variability most and the

spatially structured component explains a sizable proportion of the remaining second home

ratio variance. Differently, the temporal components explain very little of the variability.

Finally, the space-time interaction term explains a small proportion of the remaining variance,

but the proportion is relatively larger than the proportion of any temporal component.

5 Robustness Check

Matters of concern may arise from two parts, the sensitivity to the priors and the necessity

of including covariates.

Regarding the prior sensitivity, different priors are tested to assess the change in the

posterior distribution of all covariates and variance parameters. The tested priors (Simpson,

Rue, Riebler, Martins, and Sørbye, 2017) are shown in Table 9 in the A.2. Note that in this

study, the change in the posterior distribution of the covariates is a main criterion to decide

whether Model 5 is sensitive to priors.

For the fixed effects shown in Table 11 in the A.2, the posterior distribution of all co-

variates obtained from the tested priors is almost the same as the posterior distribution of

covariates using the default prior. These results suggest that Model 5 should be not sensitive

to priors.

To evaluate the need to include all covariates, we rerun the Model 5 without any covariates,

named as a convolution model29. From Model 5 to the convolution model, the decrease of

DIC can be clearly seen in Table 12 in the A.2. Rao (2003) holds the view that incorporating

covariates to small areas estimation models can increase the model predictive power and our

finding provides evidence for this point of view.

6 Concluding Remarks

In this study, we propose using a Bayesian spatiotemporal approach to identifying the spatial

and temporal variation in the second home ratio in Corsica, France, from 2007 to 2016. We

also investigate the impact of fixed effects, including amenity factors and socioeconomic

factors on the second home ratio. These fixed effects provide additional insight into the

dynamics of Corsican second home ratio. To our knowledge, the approach in this study has

previously not been used for analysing second homes and offer a useful tool for practitioners

to investigate fixed effects and to identify spatial clusters and temporal trends.

29 The convolution model consists solely of an intercept term with all random effects components.
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Regarding the statistical modelling, the models are initially motivated by spatiotemporal

data indexed at medium geographical and temporal resolution. Further, we intend to point

out the importance of space and time in second home analyses. To gauge latent spatial and

temporal information, we introduce 6 candidate models with a range of spatial and temporal

representation structures, which still formulate into Bayesian hierarchical models. Note that

all models are implemented by the R-INLA package in the statistical programming language

R. As a result, the models are widely applicable and highly reproducible. INLA do provide a

feasible way to hand large, spatiotemporal datasets and return a considerably accurate result

for practical applications. Alternatively, MCMC methods can be used to fit the models, but

many scholars (Huang, Malone, Minasny, McBratney, and Triantafilis, 2017; Modrák, 2018)

hold the view that INLA require less computationally resource than the MCMC methods.

Furthermore, INLA currently become the default spatial analytic tool. Lastly, based on

the information criteria, the best fitting model owns spatial, temporal and spatiotemporal

random components. Hence, the stable spatial variation and gradual temporal trend in the

second home ratio are uncovered.

Some key findings are related to fixed effects. Most amenity covariates are associated

with an increase in the second home ratio. To be more specific, a 1-unit increase in the

physical landscape is found to significantly increase the odds of the probability being second

homes, by approximately 1.098 times. The coastal and mountainous county is also found

to significantly increase the odds comparing with the inland and flat county, by around

2.136 and 1.188 times respectively. While the cultural landscape significantly decreases the

odds. In terms of socio-economic covariates, an increment in the log-transformed household

is associated with a considerable reduction in the odds. Furthermore, an increment in the

log-transformed interest rate is associated with a moderate decline in the odds.

Regarding the random effect, the “hot spot” and “cold spot” areas of second home ratio

in Corsica are well identified30. In addition, the gradual temporal tend for the second home

ratio is also recognized throughout the 10-year study period. The spatiotemporal dynamics of

the second home ratio are finally described by the space-time interaction random effect. We

gain some further insight into the spatiotemporal dynamics, rather than lose the information

in the noise term. Therefore, the proposed approach can be viewed as a decent tool to analyse

second home dynamics and the local government may perform additional interventions and

activities to the identified areas in the findings.

In conclusion, this work contributes to the existing research in second homes in two broad

ways. The study assesses the second home in Corsica, an island in the Mediterranean, at

30 e.g., the Balagne region, the South-eastern region, the Ajaccio city and its neighbour counties, as well
as Bastia and its neighbour counties.
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the medium geographical and temporal resolution. Since this area has not been analysed

quantitatively, our findings probably provide valuable information for the intervention from

the local government. From a methodological perspective, we underline the importance of

space and time. Spatial, temporal and spatiotemporal information is very likely missed in

many second home analyses. Furthermore, to our knowledge, the approach has not been used

for investigating second homes in a given area. In addition to latent spatial and temporal

information, the inclusion of the amenity and socio-economic factors offers additional insights

in the Corsican second home ratio. However, applications of quantitative techniques in second

home analyses are still in their infancy and much remains to be done. The limitation firstly

comes from the availability of data. Second, the quantitative method should deal with both

spatial and temporal dynamics in data. But addressing these issues substantially complicates

model specification or requires more flexible models. Finally, endogeneity of independent

variable is still under investigated in Bayesian spatial modelling.
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A Appendices

A.1 Intrinsic conditional autoregressive model

The conditional distribution in Eq.3 allows us to derive a joint distribution. With the help of

the Brook’s lemma (1964), Besag (1974) demonstrates that the joint distribution for random

vector, Υ = (υ1, . . . , υn), is multivariate normal with a mean of 0 and a precision matrix
∑

31.

Υ ∼ N
(
0, Q−1

)
Q = [τ(D −W )]−1

where D is a diagonal matrix, where diagonal entity dii is the number of neighbors for

region ni. τ is a precision parameter, τ = 1
σ2 . Under the condition of the precision parameter

of 1 with a fully connected neighborhood graph, the joint distribution can be simplified and

then rewritten a pairwise difference formulation:

p(Υ) ∝ exp

(
−1

2

∑
i∼j

(υi − υj)2
)

32 (22)

where −1
2

∑
i∼j (φi − φj)2 is considered as a penalty term. As spatial proximity decreases,

penalty strength increases. In the small area estimation literature, it means that a unit

borrows more strength from adjacent units than those further apart (See Banerjee, Carlin,

and Gelfand (see 2014, chap. 4); Schmidt and Nobre (2018) for more details.).

A.2 Tables

31 The precision matrix is an inverse of the covariance matrix,
∑

= Q−1.
32 p represents the probability density function.
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Table 7: Data description and sources
Variable Desciption Source

Physical landscape
Physical landscape counts within a county
e.g., lakes, mountains, alpine rocks, estuary

Corsica Recreational Areas database, UMR LISA

Cultural landscape
Cultural landscape counts within a county
e.g., castles, city walls, towers, churches

Corsica Recreational Areas database, UMR LISA

Coastal county
Dummy variable,
1: coastal county; 0 otherwise

Corsica GIS database, UMR LISA

Mountainous county
Dummy variable,
1: the average elevation ≥ 500m; 0 otherwise

Corsica GIS database, UMR LISA

Population Measured by household www.insee.fr/fr/information/2008354
Household growth (householdit − householdit−1) /householdit−1 www.insee.fr/fr/information/2008354

Interest rate
webstat.banque-france.fr/en/
quickview.do?SERIES KEY=243.MIR1.Q.
FR.R.A22FRX.A.R.A.2254FR.EUR.C50

Council tax “Taxe d’habitation” www.impots.gouv.fr/portail/statistiques

Unemployment rate
At “zone d’emploi” level
360 counties are divided into 7 “zone d’emplois“.

www.insee.fr/fr/statistiques/1893230

Table 8: Descriptive statistics for the temporal variation of second home counts

Mean Min Max St. Dev.

2007 197.336 6 4,465 389.425
2008 203.175 4 4,906 413.219
2009 207.750 4 5,077 426.535
2010 212.553 4 5,115 432.917
2011 220.594 4 5,375 450.401
2012 229.789 4 6,025 482.729
2013 236.519 4 6,025 486.182
2014 244.769 4 6,748 524.319
2015 250.450 4 6,539 524.530
2016 254.512 4 6,581 529.661

Table 9: Tested hyperpriors in the prior sensitivity analysis

Default Test 1 Test 2

Spatially Structured Component log τ = log Gamma(1, 5× 10−5) log τ = log Gamma(1, 1× 10−4) Prob(τ > 0.3/0.31) = 0.01
Spatially Unstructured Component log τ = log Gamma(1, 5× 10−5) log τ = log Gamma(1, 1× 10−4) Prob(τ > 0.3/0.31) = 0.01

Spatially Structured Component log τ = log Gamma(1, 5× 10−5) log τ = log Gamma(1, 1× 10−4) Prob(τ > 0.3/0.31) = 0.01
Spatially Unstructured Component log τ = log Gamma(1, 5× 10−5) log τ = log Gamma(1, 1× 10−4) Prob(τ > 0.3/0.31) = 0.01

Space-time interaction term log τ = log Gamma(1, 5× 10−5) log τ = log Gamma(1, 1× 10−4) Prob(τ > 0.3/0.31) = 0.01
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Table 12: Refitted models assessment

DIC LCPO RMSE

Model 5 25,257.31 12,978.80 0.0344
Convolution Model5 25,615.81 13,305.67 0.0353
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A.3 Graphs

Figure 6: Adjacency matrix: rows and columns identify areas; squares identify neighbors.

Figure 7: Posterior unstructured temporal trend for second home ratio πit in Corsica.
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Figure 8: Posterior mean of the type-I spatio-temporal interaction δit for the log odds of the
prbability being second homes.
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