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Abstract

We determine the optimal income tax schedule when individuals both determine

endogenously their labor supply and have the possibility of avoiding paying taxes.

Considering a convex concealment cost function, we propose a formula for the optimal

marginal tax rate, that generalizes the standard Mirrlees formula to the case of tax

avoidance. We also show that the results obtained by Casamatta (2020) in the fixed

income case hold true when labor supply is endogenous: with a low enough marginal

cost of avoidance, part of the taxpayers, located in the interior of the skill distribution,

optimally choose to avoid taxes.
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1 Introduction

For a long time, the literature on optimal labor income taxation, initiated by Mirrlees

(1971) and surveyed in Piketty and Saez (2013), has focused on the labor supply response

to taxes. In these models, individuals react to changes in marginal tax rates by adjusting

their labor supply and thus the income they earn. More recently, it has been recognized that

modifications in marginal tax rates can induce individuals to alter their taxable income,

not only through a change in labor supply, but also through a change in declared income

(while keeping true income unchanged) (Saez et al. (2012)). This latter form of behavioral

response to taxation can be illegal (tax evasion) or legal (tax avoidance). In this article,

we focus on tax avoidance, that can be defined, following Piketty et al. (2014), as “changes

in reported income due to changes in the form of compensation but not in the total level

of compensation”. More precisely, we incorporate avoidance responses by taxpayers in the

standard Mirrleesian income taxation model, besides the usual labor supply response. This

is all the more important that empirical evidence has pointed to fairly modest effects of

taxes on labor supply (Keane (2011)), whereas the avoidance response appears stronger

(Slemrod (1995), Saez et al. (2012)).

The first study that derived the optimal tax schedule while accounting for the avoidance

margin was proposed by Grochulski (2007). In this model, labor supply is fixed so that

individuals respond to taxes along the avoidance margin only. Considering a subadditive

concealment cost function, Grochulski (2007) proves two main results. First, at the opti-

mum with taxes, no individuals should hide income. This result is called the no-falsification

theorem. Second, the optimal tax schedule is such that marginal tax rates are equal to the

marginal falsification costs. Casamatta (2020) later relaxed the subadditivity assumption,

by considering a convex cost function, and showed that the no-falsification theorem was

not valid anymore in this setup, with part of the taxpayers displaying income lower than

their true income.

None of these two articles did incorporate labor supply responses to taxation. This issue
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has been taken up in two recent papers. Piketty et al. (2014) propose a formula for the

top-income marginal tax rate while considering a quasi-linear utility function (no income

effects on labor supply). Huang and Rios (2016) also adopt the quasi-linear frawework and

characterize the full optimal tax curve.

Our work belongs to this strand of the literature and extends it in two directions. First,

we consider a general form for the utility function. Second, we allow for a concealment cost

function non-differentiable at 0, implying that some individuals adopt a corner solution for

their labor supply. We develop a formula for the marginal tax rates in this general frame-

work and contrast it with the standard Mirrlees formula. We also show that individuals

located at the extreme of the skill distribution do not avoid taxes, while those located in

the interior of the distribution do, thus extending the result obtained by Casamatta (2020)

in the fixed income case, to the case of endogenous labor supply.

2 Model

Individuals differ with respect to productivity w, distributed according to the cumulative

distribution function F (.) and the density f(.) on the support [w−, w+]. An individual

with productivity w generates income y = wl, where l denotes his labor supply.

True income is not observable to the fiscal authority and individuals have the possibility

to hide (legally) part of it to the government. This action is however costly and we denote

φ(∆) the cost of hiding ∆ euros, with φ(0) = 0. We allow for the possibility that individuals

declare more than their true income, in which case ∆ < 0. We assume that φ is continuous

and strictly convex.1 Moreover, it is (weakly) decreasing for ∆ < 0 and strictly increasing

for ∆ > 0. It is differentiable everywhere, except at 0 where the right-hand (resp. left-

hand) derivative is positive (resp. negative). We denote these derivatives φ′+(∆) and φ′−(∆)

respectively.2

1Strict convexity, combined with the fact that φ(0) ≤ 0, implies that φ violates the subaddivity as-
sumption in Grochulski (2007) and Landier and Plantin (2017), where a function f is subadditive if and
only if f(x+ y) ≤ f(x) + f(y).

2The right- and left-hand derivatives at 0 coincide when φ′+(0) = φ′−(0) = 0.
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The utility function, u(c, l), is increasing in consumption c and decreasing in labor

supply l. Morover, we assume that indifference curves are strictly convex in the (c, y)

space.

3 The social planner’s program

An individual with productivity w displays income r(w) to the tax administration and

pays a tax T (w) on this income.

The social planner determines the functions r(.) and T (.) that maximize social welfare,

expressed as the sum of a concave transformation G(.) of individual utility levels, under

resource and incentive constraints:

(P1) max
r(.),T (.)

∫
G(U(w))dF (w)

st

c(w) = y(w)− T (w)− φ(y(w)− r(w)), (1)

U(w) = u(c(w), y(w)/w) (2)∫
T (w)f(w)dw ≥ 0 (3)

and

U(w) ≥ V (ŷ(w′, w), w′, w), ∀w,w′ ∈ [w−, w+], (4)

where equation (3) represents the Government Budget Constraint (GBC) and (4) the

incentive constraints: a type w individual should not want to pretend that he is of type w′.
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3.1 Optimal labor supply

In equation (4), ŷ(w′, w) represents the income earned by an individual with productivity

w who pretends to be of type w′. It is obtained by solving the program:

max
y
V (y, w′, w) ≡ u(y − T (w′)− φ(y − r(w′)), y/w). (5)

An interior solution satisfies the first-order condition:

(1− φ′(ŷ(w′, w)− r(w′)))uc +
1

w
ul = 0. (6)

Three cases are possible: ŷ(w′, w) > r(w′), ŷ(w′, w) < r(w′) or ŷ(w′, w) = r(w′) . The first

two cases involve an interior solution. They arise respectively when:

1− φ′+(0) ≥ − 1

w

ul
uc

and

1− φ′−(0) ≤ − 1

w

ul
uc
.

The corner solution ŷ(w′, w) = r(w′) arises when:

1− φ′+(0) < − 1

w

ul
uc

< 1− φ′−(0).

3.2 Incentive constraints

From the incentive constraints in program (P1), every individual should report truthfully

his type. Therefore:

w = arg max
w′

V (ŷ(w′, w), w′, w). (7)

The first-order condition implies:

(−T ′(w) + r′(w)φ′)uc +
∂ŷ

∂w′

∣∣∣∣
(w,w)

((1− φ′)uc +
1

w
ul) = 0. (8)
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Two cases are then possible. In the first one, y(w) is an interior solution and satisfies the

first-order condition:

(1− φ′(y(w)− r(w)))uc +
1

w
ul = 0. (9)

Using this condition, the second term in (8) vanishes and the first-order condition of pro-

gram (7) becomes:

− T ′(w) + r′(w)φ′(y(w)− r(w)) = 0. (10)

In the second case, y(w) is a corner solution: y(w) = r(w). This implies that ∂ŷ/∂w′|(w,w) =

r′(w) and condition (8) becomes:

(−T ′(w) + r′(w))uc + r′(w)
1

w
ul = 0. (11)

In the remainder of this article, we shall assume that the second-order condition of program

(7) is satisfied. Violation of the second-order condition implies that a subset of individuals

should be bunched at the same allocation, declaring the same level of income and paying

the same amount of taxes.3

We now use the first-order condition (8) to re-express the incentive constraints (4), a

standard approach in optimal taxation problems. Let differentiate (2) with respect to w:

dU

dw
= y′(w)((1− φ′)uc +

1

w
ul) + (−T ′(w) + r′(w)φ′)uc −

y(w)

w2
ul.

We again distinguish whether y(w) is an interior solution or not. In the first case, the term

(1− φ′)uc + (1/w)ul on the right-hand side of the above expression is equal to 0 (see (9)).

In the case of a corner solution: y′(w) = r′(w). Using (10) and (11), we find that in both

cases:
dU

dw
= −y(w)

w2
ul. (12)

This expression, which summarizes the incentive constraints under the first-order approach,

3For a careful treatment of bunching in optimal taxation models, see Lollivier and Rochet (1983), Ebert
(1992) or Boadway et al. (2000).
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is identical to the one encountered in the standard Mirrlees model (Mirrlees (1971), Piketty

and Saez (2013)).

Taking U(w) as the state variable and r(w) as the control variable, the planner’s pro-

gram can then be restated as follows:

(P2) max
r(.),U(.)

∫
G(U(w))dF (w)

st ∫
(y(w)− c(w)− φ(y(w)− r(w)))f(w)dw ≥ 0 and (12),

where the first constraint is the GBC, that has been re-expressed by using (1). Optimal

labor income y(w) and consumption c(w) are determined by solving program (5) and

inverting the condition U(w) = u(c(w), y(w)/w).

4 First-order conditions of the planner’s program

We form the Hamiltonian associated to program (P2) above:

H = (G(U(w)) + µ(y(w)− c(w)− φ(y(w)− r(w))))f(w) + λ(w)
dU

dw
,

where µ and λ(w) are the multipliers associated to the GBC and the incentive constraints

respectively.

The first-order conditions are:

∂H
∂r

= 0

⇔µ(φ′ +
dy

dr
(1− φ′)− dc

dr
)f(w) + λ(w)(

dy

dr
(− 1

w2
ul −

y(w)

w3
ull)−

dc

dr

y(w)

w2
ucl) = 0. (13)

∂H
∂U

= −λ′(w)

⇔− λ′(w) = (G′(U(w))− µ dc
dU

)f(w)− y(w)

w2
ucl

dc

dU
. (14)
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We differentiate (2), to obtain:

dc

dr
= − 1

w

ul
uc

dy

dr
dc

dU
=

1

uc
.

Substituting these expressions into the foc (13) and (14), these latter become:

µ(φ′ +
dy

dr
(1− φ′ + 1

w

ul
uc

))f(w) + λ(w)
dy

dr
(− 1

w2
ul +

y(w)

w3
(ucl

ul
uc
− ull)) = 0 (15)

− λ′(w) = (G′(U(w))− µ

uc
)f(w)− λ(w)

y(w)

w2

ucl
uc
. (16)

Integrating (16) yields:

λ(w) =

∫ w+

w
(G′(U(w))− µ

uc
) exp(−

∫ m

w
(y(s)ucl)/(s

2uc)ds)f(m)dm, (17)

where λ(w) ≤ 0, λ(w−) = λ(w+) = 0.

5 Reported incomes at the second-best optimum

We now establish a first feature of the optimal allocation: people should not overstate their

income level.

Proposition 1

1. At the optimal (second-best) allocation: r(w) ≤ y(w).

2. For φ′+(0) low enough, some individuals, located in the interior of the skill distribu-

tion, optimally avoid taxes: r(w) < y(w).

Proof. See appendix A.

This means that individuals either declare their true income or understate their income

to the fiscal administration. Claiming to have more income then what is really earned is

at the same time costly and make incentive constraints more stringent.
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6 Marginal tax rates

We first derive the elasticities of real and taxable income. For a given tax schedule Tr(r),

individuals choose real income y and taxable income r in order to maximize u(c, l) subject

to the budget constraint c = y − Tr(r) − φ(y − r). Considering a linearized tax schedule,

the budget constraint becomes c = y − τr − φ(y − r) + I, where I is virtual income.4

Substituting the budget constraint into the utility function, they solve the program:

max
y,r

u(y − r + (1− τ)r − φ(y − r) + I, y/w). (18)

In the case where both y and r are interior solutions, the first-order conditions write:

(1− φ′)uc +
1

w
ul = 0 (19)

(1− τ)− 1 + φ′ = 0. (20)

We differentiate these conditions with respect to y, r, 1− τ and I to obtain:

dy
Ω

w2
+ d(1− τ)(uc + r(1− τ)ucc +

r

w
ucl) + dI((1− τ)ucc +

1

w
ucl) = 0 (21)

d(1− τ) + dyφ′′ − drφ′′ = 0, (22)

where Ω ≡ ull + w2(1− τ)2ucc + 2w(1− τ)ucl.

Re-arranging these expressions leads to:

ey = −1− τ
y

w2(uc + r(1− τ)ucc + r
wucl)

Ω
(23)

er =
1

φ′′
1− τ
r

+
y

r
ey =

1− τ
r

1

φ′′
(1− φ′′

w2(uc + r(1− τ)ucc + r
wucl)

Ω
), (24)

where ey ≡ (dy/d(1− τ))((1− τ)/y) and er ≡ (dr/d(1− τ))((1− τ)/r) are the elasticities

of the true and declared incomes with respect to the net-of-tax rate respectively.

4This linearized tax schedule is characterized by τ = T ′r(r) and I = τr − Tr(r).
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Let define sheltered income as z ≡ y − r. We have:

ez ≡
dz

d(1− τ)

1− τ
z

= −1− τ
φ′′

1

z

yey = rer + zez. (25)

We also determine compensated elasticities. In this purpose, we first compute, using

(21) and (22), the response of labor income (true, declared and sheltered) to a change in

exogenous income I:

dy

dI
= − w2(1− τ)ucc + wucl

ull + w2(1− τ)2ucc + 2w(1− τ)ucl
dr

dI
=
dy

dI
(26)

dz

dI
= 0.

We then use the Slutsky equation (expressed in elasticity form):

ec$ = e$ − η$, j = y, r, z (27)

where η$ ≡ (1− τ)(d$/dI), to obtain:

ecy =
1− τ
y

−w2uc + (y − r)(w2(1− τ)ucc + wucl)

ull + w2(1− τ)2ucc + 2w(1− τ)ucl
(28)

ecr =
1− τ
r

1

φ′′
(1− φ′′ w2uc

ull + w2(1− τ)2ucc + 2w(1− τ)ucl
) (29)

ecz = ez = −1− τ
φ′′

1

z
. (30)

From (15), and using (19) and (22), we can express the marginal tax rate as follows:

τ = −λ(w)

µ

1

wf(w)

dy

dr
(− 1

w
ul +

y(w)

w2
(ucl

ul
uc
− ull)). (31)

We re-arrange the terms of this formula, to arrive at the next proposition.

Proposition 2 The optimal marginal tax rate on declared income satisfies:
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T ′r(r(w))

1− T ′r(r(w))
= −

uc
λ(w)
µ

1− F (w)

1− F (w)

wf(w)
(1 +

zez
rer

)(1 +
(r + z)(1 + er − ecr)

recr + zecz
), (32)

where µ is the multiplier of the government budget constraint and λ(w) is defined in (17).

Proof. See appendix B.

When true and reported incomes coincide (which correponds to the corner solution

y = r), the formula for the optimal marginal tax rate (32) becomes:

T ′r(r(w))

1− T ′r(r(w))
= −

uc
λ(w)
µ

1− F (w)

1− F (w)

wf(w)
(
1 + er
ecr

). (33)

This coincides with the standard Mirrlees formula (see equation (15) in Saez (2001)).

Furthermore it can be shown that formula (32) reduces to:

T ′r(r(w))

1− T ′r(r(w))
= −

uc
λ(w)
µ

1− F (w)

1− F (w)

wf(w)
(1 +

zez
rer

)(1 +
1

ey
),

in the case of a quasi-linear utility function (no income effects), which is close to formula

(8) in Huang and Rios (2016) with t set to 0, the difference coming from the way they

define the social welfare function.

7 Conclusion

We have studied the optimal labor income taxation problem when individuals both deter-

mine their labor supply and have the possibility of avoiding paying taxes. We have shown

that, with a low enough marginal cost of avoidance, part of the taxpayers, located in the

interior of the skill distribution, choose to conceal part of their income to the tax admin-

istration. This result was obtained by Casamatta (2020) in the fixed income case, and is

therefore robust to the introduction of endogenous labor supply. For these individuals, the

optimal marginal tax rate depends both on the elasticities of true and reported incomes.

For the other individuals, located at the extremes of the skill distribution, the optimal
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marginal tax formula coincides with the standard Mirrlees formula.
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Appendix

A Proof of Proposition 1

1. We evaluate the derivative of the Hamiltonian when r(w) is larger than y(w):

∂H
∂r

∣∣∣∣
r(w)>y(w)

= µφ′−f(w) + λ(w)
dy

dr

∣∣∣∣
r(w)>y(w)

(− 1

w2
ul +

y(w)

w3
(ucl

ul
uc
− ull)).

Differentiating (9), we have:

dy

dr
=
φ′′uc + (1− φ′)φ′ucc + 1

wφ
′ucl

−Dy
,

where Dy is the derivative of (9) with respect to y. Assuming that the second-order

condition of program (5) is satisfied, Dy is negative. We use (9) to rewrite the numerator,

evaluated at r(w) > y(w), as:

φ′′uc +
1

w
φ′−(−ul

uc
ucc + ucl).

Indifference curves are assumed to be increasing and convex in the (c, y) space. They are

therefore increasing and concave in the (y, c) space, implying:

d2y

dc2

∣∣∣∣
u

< 0

⇔ −ul
uc
ucc + ucl < 0.

Recalling that, by assumption, φ′− ≤ 0 and φ′′ > 0, we obtain ∂y/∂r|r(w)>y(w) > 0.

Finally, convexity of the indifference curves in the (c, y) space implies uclul/uc−ull > 0.

Recalling that λ(w) ≤ 0, we can conclude that ∂H/∂r|r(w)>y(w) < 0, meaning that the

social planner has no incentive to increase r(w) above y(w).

2. Similar arguments can be developed to prove that ∂H/∂r|r(w)↗y(w) < 0 when φ′+(0)
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is low enough:

∂H
∂r

∣∣∣∣
r(w)↗y(w)

= µφ′+(0)f(w) + λ(w)
dy

dr

∣∣∣∣
r(w)↗y(w)

(− 1

w2
ul +

y(w)

w3
(ucl

ul
uc
− ull)).

When φ′+(0) → 0, the first term on the right-hand side vanishes. Moreover, from the dis-

cussion above, the last term between parenthesis is positive. Because λ is strictly negative

for individuals with w ∈ (w−, w+), it remains to be shown that dy/dr|r(w)↗y(w) is positive:

dy

dr

∣∣∣∣
r(w)↗y(w)

=
φ′′uc + 1

wφ
′
+(0)(− ul

uc
ucc + ucl)

−Dy > 0
.

Recalling that φ′′ > 0, this expression is strictly positive when φ′+(0)→ 0.

B Proof of Proposition 2

1. We first prove that:

y(w)

w2
(ucl

ul
uc
− ull)) = (1− τ)uc

1 + ey − ecy
r
ye
c
r − r

yer + ey
. (34)

From (23):

1 + ey =
ull + w2(1− τ)2ucc + 2w(1− τ)ucl − w2(1− τ)ucy −

r
yw

2(1− τ)2ucc − r
yw(1− τ)ucl

Ω

=
ull + (1− r

y )w2(1− τ)2ucc + (2− r
y )w(1− τ)ucl − w2(1− τ)ucy

Ω
.

Using (28):

1 + ey − ecy =
ull + (1− r

y )w2(1− τ)2ucc + (2− r
y )w(1− τ)ucl − w2(1− τ)ucy

Ω

−
−w2(1− τ)ucy + (1− r

y )(w2(1− τ)2ucc + w(1− τ)ucl)

Ω

=
ull + w(1− τ)ucl

Ω
. (35)
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Using (24) and (29):

r

y
ecr −

r

y
er + ey =

r

y
ecr −

1

φ′′
1− τ
y

= −w
2uc
Ω

1− τ
y

. (36)

Combining (35) and (36):

1 + ey − ecy
r
ye
c
r − r

yer + ey
=
ull + w(1− τ)ucl

−w2uc

y

1− τ

=

ul
uc
ucl − ull
w2uc

y

1− τ
.

Re-arranging the last expression leads to (34).

2. We then prove that:
dy

dr
=
yey
rer

. (37)

From (21):
dy

dr
= T ′′

uc + r(1− τ)ucc + r
wucl

(1− τ)2ucc + 2(1−τ)
w ucl + 1

w2ull
. (38)

Using (23):
dy

dr
= −T ′′ yey

1− τ
.

Using (24):

1− τ
φ′′

= rer − yey

⇔ T ′′

1− τ
=
T ′′

φ′′
1

rer − yey
.

Using (38):
dy

dr
= −T

′′

φ′′
yey

rer − yey
. (39)
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From (22):

dy

dr
= 1 +

T ′′

φ′′
.

⇔ T ′′

φ′′
=
dy

dr
− 1.

Substituting into (39):

dy

dr
= (1− dy

dr
)

yey
rer − yey

.

⇔ dy

dr
=
yey
rer

.

3. We use (19) and (20), to obtain:

− 1

w
ul = (1− τ)uc. (40)

Starting from (31), and using (34), (37), and (40), we arrive at:

T ′r(r(w))

1− T ′r(r(w))
= −λ(w)

µ

uc
wf(w)

yey
rer

(1 +
1 + ey − ecy

r
ye
c
r − r

yer + ey
).

From (25):
yey
rer

= 1 +
zez
rer

.

Moreover, it can be shown easily, using (27) and (26), that ey − ecy = er − ecr. We finally

multiply the denominator and numerator of

1 + ey − ecy
r
ye
c
r − r

yer + ey

by y = r + z and we use (25), to arrive at (32).
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